{"title":"Potential-driven mechanisms for raising the intercalation selectivity 100-fold in multi-ion removal from water","authors":"Johan Nordstrand , Joydeep Dutta","doi":"10.1016/j.desal.2023.116865","DOIUrl":null,"url":null,"abstract":"<div><p>Intercalation host compounds (IHC) are promising for selective ion removal from water. Recent theoretical developments have suggested that electrochemical desalination with IHC (nickel hexacyanoferrate (NiHCF)) electrodes could separate K<sup>+</sup> and Na<sup>+</sup> by a factor of 160. However, the experiments only produce a selectivity of around 3. In this work, we derive theory and a finite-element (FEM) model to investigate the origins of time-dependent selectivity suppression. The first results show that ion starvation can severely limit selectivity. Surprisingly, we also find that operations at low state-of-charge produce theoretical selectivity of 600, which is way above what was previously thought to be the theoretical maximum. Also surprising is that the main cause of low selectivity is that the constant-current overpotential disproportionally favors the adsorption of the ion that is less selected in the equilibrium state. By implementing short charging cycles near the depleted state with rest periods at the ends, we raised the time-dependent selectivity from 3 to 450. Even higher output selectivity could be achieved by combining IHC cathodes with membrane-less carbon anodes. In conclusion, the insights and methods derived here could enable highly selective ion removal at the device level for a wide class of IHC materials.</p></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"565 ","pages":"Article 116865"},"PeriodicalIF":8.3000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0011916423004976/pdfft?md5=8fccdd6bac18edaca8dee430e468df38&pid=1-s2.0-S0011916423004976-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Desalination","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011916423004976","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Intercalation host compounds (IHC) are promising for selective ion removal from water. Recent theoretical developments have suggested that electrochemical desalination with IHC (nickel hexacyanoferrate (NiHCF)) electrodes could separate K+ and Na+ by a factor of 160. However, the experiments only produce a selectivity of around 3. In this work, we derive theory and a finite-element (FEM) model to investigate the origins of time-dependent selectivity suppression. The first results show that ion starvation can severely limit selectivity. Surprisingly, we also find that operations at low state-of-charge produce theoretical selectivity of 600, which is way above what was previously thought to be the theoretical maximum. Also surprising is that the main cause of low selectivity is that the constant-current overpotential disproportionally favors the adsorption of the ion that is less selected in the equilibrium state. By implementing short charging cycles near the depleted state with rest periods at the ends, we raised the time-dependent selectivity from 3 to 450. Even higher output selectivity could be achieved by combining IHC cathodes with membrane-less carbon anodes. In conclusion, the insights and methods derived here could enable highly selective ion removal at the device level for a wide class of IHC materials.
期刊介绍:
Desalination is a scholarly journal that focuses on the field of desalination materials, processes, and associated technologies. It encompasses a wide range of disciplines and aims to publish exceptional papers in this area.
The journal invites submissions that explicitly revolve around water desalting and its applications to various sources such as seawater, groundwater, and wastewater. It particularly encourages research on diverse desalination methods including thermal, membrane, sorption, and hybrid processes.
By providing a platform for innovative studies, Desalination aims to advance the understanding and development of desalination technologies, promoting sustainable solutions for water scarcity challenges.