{"title":"Statistical Modeling for Practical Pooled Testing During the COVID-19 Pandemic","authors":"S. Comess, H. Wang, S. Holmes, Claire Donnat","doi":"10.1214/22-sts857","DOIUrl":null,"url":null,"abstract":"Pooled testing offers an efficient solution to the unprecedented testing demands of the COVID-19 pandemic, although with potentially lower sensitivity and increased costs to implementation in some settings. Assessments of this trade-off typically assume pooled specimens are independent and identically distributed. Yet, in the context of COVID-19, these assumptions are often violated: testing done on networks (housemates, spouses, co-workers) captures correlated individuals, while infection risk varies substantially across time, place and individuals. Neglecting dependencies and heterogeneity may bias established optimality grids and induce a sub-optimal implementation of the procedure. As a lesson learned from this pandemic, this paper highlights the necessity of integrating field sampling information with statistical modeling to efficiently optimize pooled testing. Using real data, we show that (a) greater gains can be achieved at low logistical cost by exploiting natural correlations (non-independence) between samples -- allowing improvements in sensitivity and efficiency of up to 30% and 90% respectively;and (b) these gains are robust despite substantial heterogeneity across pools (non-identical). Our modeling results complement and extend the observations of Barak et al (2021) who report an empirical sensitivity well beyond expectations. Finally, we provide an interactive tool for selecting an optimal pool size using contextual information","PeriodicalId":51172,"journal":{"name":"Statistical Science","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2021-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-sts857","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 8
Abstract
Pooled testing offers an efficient solution to the unprecedented testing demands of the COVID-19 pandemic, although with potentially lower sensitivity and increased costs to implementation in some settings. Assessments of this trade-off typically assume pooled specimens are independent and identically distributed. Yet, in the context of COVID-19, these assumptions are often violated: testing done on networks (housemates, spouses, co-workers) captures correlated individuals, while infection risk varies substantially across time, place and individuals. Neglecting dependencies and heterogeneity may bias established optimality grids and induce a sub-optimal implementation of the procedure. As a lesson learned from this pandemic, this paper highlights the necessity of integrating field sampling information with statistical modeling to efficiently optimize pooled testing. Using real data, we show that (a) greater gains can be achieved at low logistical cost by exploiting natural correlations (non-independence) between samples -- allowing improvements in sensitivity and efficiency of up to 30% and 90% respectively;and (b) these gains are robust despite substantial heterogeneity across pools (non-identical). Our modeling results complement and extend the observations of Barak et al (2021) who report an empirical sensitivity well beyond expectations. Finally, we provide an interactive tool for selecting an optimal pool size using contextual information
期刊介绍:
The central purpose of Statistical Science is to convey the richness, breadth and unity of the field by presenting the full range of contemporary statistical thought at a moderate technical level, accessible to the wide community of practitioners, researchers and students of statistics and probability.