{"title":"Experimental realization of nonlinear demagnification in plasma-based charged particle optics","authors":"S. Barman, Sanjeev Kumar Maurya, S. Bhattacharjee","doi":"10.1088/2516-1067/ac7128","DOIUrl":null,"url":null,"abstract":"We experimentally demonstrate nonlinear demagnification (DM) in plasma-based charged particle optics. The nonlinearity originates from the non-uniform penetration of electric fields through the plasma sheath region, when the object beam size (d P ) is reduced to below the Debye length (λ d ). The strength of nonlinearity depends upon d P and λ d , as confirmed from experimental results and a theoretical model. Nonlinear DM is unique to optics of classical Maxwell-Boltzmann systems and unrealized in conventional liquid metal sources where the Fermi Debye length ≪d P . The realization of plasma sheaths being able to control DM can greatly enhance the performance of charged particle optical systems.","PeriodicalId":36295,"journal":{"name":"Plasma Research Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Research Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2516-1067/ac7128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0
Abstract
We experimentally demonstrate nonlinear demagnification (DM) in plasma-based charged particle optics. The nonlinearity originates from the non-uniform penetration of electric fields through the plasma sheath region, when the object beam size (d P ) is reduced to below the Debye length (λ d ). The strength of nonlinearity depends upon d P and λ d , as confirmed from experimental results and a theoretical model. Nonlinear DM is unique to optics of classical Maxwell-Boltzmann systems and unrealized in conventional liquid metal sources where the Fermi Debye length ≪d P . The realization of plasma sheaths being able to control DM can greatly enhance the performance of charged particle optical systems.