Astha Modi, Khelan Shah, Shrey Shah, Samir Patel, Manan Shah
{"title":"Sentiment Analysis of Twitter Feeds Using Flask Environment: A Superior Application of Data Analysis","authors":"Astha Modi, Khelan Shah, Shrey Shah, Samir Patel, Manan Shah","doi":"10.1007/s40745-022-00445-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this challenging world, social media plays a vital role as it is at the pinnacle of data sharing. The advancement in technology has made a huge amount of information available for data analysis and it is on the hotlist nowadays. Opinions of the people are expressed and shared across various social media platforms like Twitter, Facebook, and Instagram. Twitter is a prodigious platform containing an ample amount of data and analyzing the data is of topmost priority. One of the most widely utilized approaches for classifying an individual’s emotions displayed in subjective data is sentiment analysis. Sentiment analysis is done using various algorithms of machine learning like Support Vector Machine, Naive Bayes, Long Short-Term Memory, Decision Tree Classifier, and many more, but this paper aims at the generalized way of performing Twitter sentiment analysis using flask environment. Flask environment provides various inbuilt functionalities to analyze the sentiments of text into three different categories: positive, negative, and neutral. Also, it makes API calls to the Twitter Developer account to fetch the Twitter data. After fetching and analyzing the data, the results get displayed on a webpage containing the percentage of positive, negative, and neutral tweets for a phrase in a pie chart. It displays the language analysis for the same phrase. Furthermore, the webpage calls attention to the tweets done on that phrase and reveals the details of the tweets. Considering the major industry runners of three different sectors namely Enterprises, Sports Apparel Industry, and Multimedia Industry, we have analyzed and compared sentiments of two different Multinational companies from each sector.</p></div>","PeriodicalId":36280,"journal":{"name":"Annals of Data Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Data Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40745-022-00445-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
In this challenging world, social media plays a vital role as it is at the pinnacle of data sharing. The advancement in technology has made a huge amount of information available for data analysis and it is on the hotlist nowadays. Opinions of the people are expressed and shared across various social media platforms like Twitter, Facebook, and Instagram. Twitter is a prodigious platform containing an ample amount of data and analyzing the data is of topmost priority. One of the most widely utilized approaches for classifying an individual’s emotions displayed in subjective data is sentiment analysis. Sentiment analysis is done using various algorithms of machine learning like Support Vector Machine, Naive Bayes, Long Short-Term Memory, Decision Tree Classifier, and many more, but this paper aims at the generalized way of performing Twitter sentiment analysis using flask environment. Flask environment provides various inbuilt functionalities to analyze the sentiments of text into three different categories: positive, negative, and neutral. Also, it makes API calls to the Twitter Developer account to fetch the Twitter data. After fetching and analyzing the data, the results get displayed on a webpage containing the percentage of positive, negative, and neutral tweets for a phrase in a pie chart. It displays the language analysis for the same phrase. Furthermore, the webpage calls attention to the tweets done on that phrase and reveals the details of the tweets. Considering the major industry runners of three different sectors namely Enterprises, Sports Apparel Industry, and Multimedia Industry, we have analyzed and compared sentiments of two different Multinational companies from each sector.
期刊介绍:
Annals of Data Science (ADS) publishes cutting-edge research findings, experimental results and case studies of data science. Although Data Science is regarded as an interdisciplinary field of using mathematics, statistics, databases, data mining, high-performance computing, knowledge management and virtualization to discover knowledge from Big Data, it should have its own scientific contents, such as axioms, laws and rules, which are fundamentally important for experts in different fields to explore their own interests from Big Data. ADS encourages contributors to address such challenging problems at this exchange platform. At present, how to discover knowledge from heterogeneous data under Big Data environment needs to be addressed. ADS is a series of volumes edited by either the editorial office or guest editors. Guest editors will be responsible for call-for-papers and the review process for high-quality contributions in their volumes.