{"title":"Production of ultracold neutrons in a decelerating trap","authors":"V. Nesvizhevsky, A. Sidorin","doi":"10.3233/jnr-220006","DOIUrl":null,"url":null,"abstract":"This note proposes a new concept for the production of ultracold neutrons (UCNs) in a decelerating trap. UCNs are widely used in the physics of elementary particles and fundamental interactions, and can potentially be used in studies of condensed matter. However, most of these studies are limited by the available UCN densities and fluxes. One of the ways to increase them is to use peak fluxes in pulsed neutron sources, orders of magnitude larger than the mean values. Here, a concept of UCN sources is proposed, which allows to implement this idea. We propose to produce very cold neutrons (VCNs) in converters located in a neutron source, extract and slow them down to UCNs by a decelerating magnetic or material trap. As shown in this paper, for both pulsed and continuous neutron sources, this method could provide a high conversion efficiency of VCNs to UCNs with low losses of density in the phase space. More detailed calculations and the proposals for concrete technical designs are going to be developed in future publications.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jnr-220006","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
This note proposes a new concept for the production of ultracold neutrons (UCNs) in a decelerating trap. UCNs are widely used in the physics of elementary particles and fundamental interactions, and can potentially be used in studies of condensed matter. However, most of these studies are limited by the available UCN densities and fluxes. One of the ways to increase them is to use peak fluxes in pulsed neutron sources, orders of magnitude larger than the mean values. Here, a concept of UCN sources is proposed, which allows to implement this idea. We propose to produce very cold neutrons (VCNs) in converters located in a neutron source, extract and slow them down to UCNs by a decelerating magnetic or material trap. As shown in this paper, for both pulsed and continuous neutron sources, this method could provide a high conversion efficiency of VCNs to UCNs with low losses of density in the phase space. More detailed calculations and the proposals for concrete technical designs are going to be developed in future publications.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.