Shionone Relieves Urinary Tract Infections by Removing Bacteria from Bladder Epithelial Cells

IF 2.6 2区 生物学 Q3 CELL BIOLOGY Cellular Microbiology Pub Date : 2023-02-03 DOI:10.1155/2023/3201540
H. Yin, Jiaoli Zhu, Yi Jiang, Yijing Mao, Chenquan Tang, Hui Cao, Yufang Huang, Huijun Zhu, Jianping Luo, Qingjiang Jin, Q. Jin, Yingjun Xue, Xin Wang
{"title":"Shionone Relieves Urinary Tract Infections by Removing Bacteria from Bladder Epithelial Cells","authors":"H. Yin, Jiaoli Zhu, Yi Jiang, Yijing Mao, Chenquan Tang, Hui Cao, Yufang Huang, Huijun Zhu, Jianping Luo, Qingjiang Jin, Q. Jin, Yingjun Xue, Xin Wang","doi":"10.1155/2023/3201540","DOIUrl":null,"url":null,"abstract":"In clinical practice, urinary tract infections (UTIs) are second only to respiratory infections in terms of infectious diseases. In recent years, drug resistance of Escherichia coli (E. coli) has increased significantly. The therapeutic effects of Shionone on UTI were assessed by modelling UTI in SD rats and SV-HUC-1 cells with E. coli solution. After treatment of Shionone, the UTI rat model showed a decrease in wet weight/body weight of bladder, as well as a reduction in cellular inflammatory infiltration of bladder tissue and a decrease in urinary levels of IL-6, IL-1β, and TNF-α. In addition, the levels of proinflammatory factors were significantly reduced in a dose-dependent manner in UTI cell model treated with different doses of Shionone (5, 10, and 20 μg/kg). The results of immunofluorescence analysis in both in vivo and in vitro experiments revealed that Shionone reduced bacterial load and the number of E. coli colonies growing on the plates was greatly reduced. These results suggested that Shionone has a good therapeutic effect on UTI, achieved by reducing bacterial load in bladder epithelial cells. The data presented here provide a basis for further research into the treatment of UTI.","PeriodicalId":9844,"journal":{"name":"Cellular Microbiology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1155/2023/3201540","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In clinical practice, urinary tract infections (UTIs) are second only to respiratory infections in terms of infectious diseases. In recent years, drug resistance of Escherichia coli (E. coli) has increased significantly. The therapeutic effects of Shionone on UTI were assessed by modelling UTI in SD rats and SV-HUC-1 cells with E. coli solution. After treatment of Shionone, the UTI rat model showed a decrease in wet weight/body weight of bladder, as well as a reduction in cellular inflammatory infiltration of bladder tissue and a decrease in urinary levels of IL-6, IL-1β, and TNF-α. In addition, the levels of proinflammatory factors were significantly reduced in a dose-dependent manner in UTI cell model treated with different doses of Shionone (5, 10, and 20 μg/kg). The results of immunofluorescence analysis in both in vivo and in vitro experiments revealed that Shionone reduced bacterial load and the number of E. coli colonies growing on the plates was greatly reduced. These results suggested that Shionone has a good therapeutic effect on UTI, achieved by reducing bacterial load in bladder epithelial cells. The data presented here provide a basis for further research into the treatment of UTI.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Shionone通过清除膀胱上皮细胞中的细菌来缓解尿路感染
在临床实践中,尿路感染在传染病方面仅次于呼吸道感染。近年来,大肠杆菌的耐药性显著增加。通过用大肠杆菌溶液模拟SD大鼠和SV-HUC-1细胞的尿路感染来评估Shionone对尿路感染的治疗作用。Shionone治疗后,UTI大鼠模型显示膀胱湿重/体重降低,膀胱组织的细胞炎症浸润减少,尿液IL-6、IL-1β和TNF-α水平降低。此外,在用不同剂量的Shionone(5、10和20)处理的UTI细胞模型中,促炎因子的水平以剂量依赖性的方式显著降低 μg/kg)。体内和体外实验中的免疫荧光分析结果表明,Shionone降低了细菌载量,并且在平板上生长的大肠杆菌菌落数量大大减少。这些结果表明,Shionone通过降低膀胱上皮细胞中的细菌负荷,对尿路感染具有良好的治疗效果。本文提供的数据为进一步研究UTI的治疗提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cellular Microbiology
Cellular Microbiology 生物-微生物学
CiteScore
9.70
自引率
0.00%
发文量
26
审稿时长
3 months
期刊介绍: Cellular Microbiology aims to publish outstanding contributions to the understanding of interactions between microbes, prokaryotes and eukaryotes, and their host in the context of pathogenic or mutualistic relationships, including co-infections and microbiota. We welcome studies on single cells, animals and plants, and encourage the use of model hosts and organoid cultures. Submission on cell and molecular biological aspects of microbes, such as their intracellular organization or the establishment and maintenance of their architecture in relation to virulence and pathogenicity are also encouraged. Contributions must provide mechanistic insights supported by quantitative data obtained through imaging, cellular, biochemical, structural or genetic approaches.
期刊最新文献
Gut Microbiota Dysbiosis: A Neglected Risk Factor for Male and Female Fertility Identification of the Plausible Drug Target via Network/Genome Analysis and Its Molecular Interaction Studies Against Multidrug Resistance Bacterial Pathogens Antibiotic Concentrations Affect the Virulence of Klebsiella quasipneumoniae subsp. similipneumoniae Isolates Alterations in the Gut Microbiota in Chinese Patients With Intrahepatic Cholestasis of Pregnancy Innovative Approaches to Suppressing Pseudomonas aeruginosa Growth and Virulence: Current Status and Future Directions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1