Klebsiella species are becoming a major global public health concern. In particular, the increase in multidrug-resistant strains is a cause for concern. This study was aimed at determining the antibiotic susceptibility of two different isolates of Klebsiella quasipneumoniae subsp. similipneumoniae and determining the virulence characteristics and bacterial morphology under subminimum inhibitory concentrations (sub-MICs) of antibiotics. In this study, two multidrug-resistant K. quasipneumoniae subsp. similipneumoniae isolates were identified, one of which was clinical, and the other was isolated from freshwater. The MICs of the antibiotics meropenem, chloramphenicol, ciprofloxacin, and kanamycin were determined for these isolates. The effects of the sub-MICs on the virulence and morphological characteristics of the bacteria were investigated in comparison with K. pneumoniae (ATCC 13883). The MICs of meropenem, chloramphenicol, ciprofloxacin, and kanamycin were 0.04, 20, 2, and 8 μg/mL in the clinical isolate; 0.2, 15, 5, and 2 μg/mL in the freshwater isolate; and 0.03, 3, 0.1, and 0.3 μg/mL for K. pneumoniae. The biofilm-forming ability of K. quasipneumoniae subsp. similipneumoniae isolates decreased with antibiotic sub-MICs. Siderophore activity increased only with MIC/4 of kanamycin and MIC/2 of chloramphenicol in the clinical isolate (p > 0.05). Furthermore, bacterial morphology and expression of virulence genes were affected differently by the sub-MICs. This study showed that biofilm formation decreased and that the changes in bacterial morphology and expression of virulence genes were very different in the presence of 1/2 and 1/4 sub-MIC antibiotics.
克雷伯氏菌正成为全球公共卫生的一个主要问题。尤其是耐多药菌株的增加令人担忧。本研究旨在确定两种不同分离株的类肺炎克雷伯氏菌亚种对抗生素的敏感性,并确定抗生素亚最低抑菌浓度(sub-MICs)下的毒力特征和细菌形态。本研究鉴定了两株耐多药的 K. quasipneumoniae subsp. similipneumoniae 分离物,其中一株为临床分离物,另一株从淡水中分离。测定了这些分离物对抗生素美罗培南、氯霉素、环丙沙星和卡那霉素的 MICs。与肺炎克氏菌(ATCC 13883)相比,研究了亚 MIC 对细菌毒力和形态特征的影响。美罗培南、氯霉素、环丙沙星和卡那霉素对临床分离株的 MIC 值分别为 0.04、20、2 和 8 μg/mL;对淡水分离株的 MIC 值分别为 0.2、15、5 和 2 μg/mL;对肺炎双球菌的 MIC 值分别为 0.03、3、0.1 和 0.3 μg/mL。类肺炎双球菌亚种的生物膜形成能力随着抗生素亚微克/毫升的增加而降低。临床分离株的嗜苷酸活性仅随着卡那霉素 MIC/4 和氯霉素 MIC/2 的增加而增加(p > 0.05)。此外,细菌形态和毒力基因的表达也受到不同 MIC 的影响。这项研究表明,在 1/2和 1/4亚微克抗生素的作用下,生物膜形成减少,细菌形态和毒力基因表达的变化也截然不同。
{"title":"Antibiotic Concentrations Affect the Virulence of Klebsiella quasipneumoniae subsp. similipneumoniae Isolates","authors":"Berfin Eroğlu, Eda Delik, Burcu Emine Tefon-Öztürk","doi":"10.1155/2024/5920468","DOIUrl":"https://doi.org/10.1155/2024/5920468","url":null,"abstract":"<p><i>Klebsiella</i> species are becoming a major global public health concern. In particular, the increase in multidrug-resistant strains is a cause for concern. This study was aimed at determining the antibiotic susceptibility of two different isolates of <i>Klebsiella quasipneumoniae</i> subsp. <i>similipneumoniae</i> and determining the virulence characteristics and bacterial morphology under subminimum inhibitory concentrations (sub-MICs) of antibiotics. In this study, two multidrug-resistant <i>K. quasipneumoniae</i> subsp. <i>similipneumoniae</i> isolates were identified, one of which was clinical, and the other was isolated from freshwater. The MICs of the antibiotics meropenem, chloramphenicol, ciprofloxacin, and kanamycin were determined for these isolates. The effects of the sub-MICs on the virulence and morphological characteristics of the bacteria were investigated in comparison with <i>K. pneumoniae</i> (ATCC 13883). The MICs of meropenem, chloramphenicol, ciprofloxacin, and kanamycin were 0.04, 20, 2, and 8 <i>μ</i>g/mL in the clinical isolate; 0.2, 15, 5, and 2 <i>μ</i>g/mL in the freshwater isolate; and 0.03, 3, 0.1, and 0.3 <i>μ</i>g/mL for <i>K. pneumoniae</i>. The biofilm-forming ability of <i>K. quasipneumoniae</i> subsp. <i>similipneumoniae</i> isolates decreased with antibiotic sub-MICs. Siderophore activity increased only with MIC/4 of kanamycin and MIC/2 of chloramphenicol in the clinical isolate (<i>p</i> > 0.05). Furthermore, bacterial morphology and expression of virulence genes were affected differently by the sub-MICs. This study showed that biofilm formation decreased and that the changes in bacterial morphology and expression of virulence genes were very different in the presence of 1/2 and 1/4 sub-MIC antibiotics.</p>","PeriodicalId":9844,"journal":{"name":"Cellular Microbiology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5920468","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142573918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific liver disease and the second most frequent cause of jaundice in pregnancy, but the etiology of it is poorly understood. By collecting blood and fecal samples from 12 healthy pregnant women (CON group) and 32 ICP patients (ICP group) in China, we performed 16s rRNA gene sequencing and analyzed microbial diversity. The results showed a decrease in species richness of the ICP group compared to that in the CON group, with a significant difference in species diversity between the two groups. Differential analysis revealed the following biomarkers: s__unclassified__Megamonas, g__Megamonas, f__Selenomonadaceae, c__Bacilli, and o__Lactobacillales. Importantly, we found a decrease in species richness of Selenomonadaceae at the family level and decreased bacilli at the class level in ICP patients. Correlation network analysis and functional gene prediction were performed accordingly. Our data provided new information linking microbiota and ICP, and are possibly helpful for further exploration of the disease.
{"title":"Alterations in the Gut Microbiota in Chinese Patients With Intrahepatic Cholestasis of Pregnancy","authors":"Xiaozhen Lei, Jiangyan Yu, Yan Huang, Hua Lai, Siming Xin, Xiaoming Zeng","doi":"10.1155/2024/1710924","DOIUrl":"https://doi.org/10.1155/2024/1710924","url":null,"abstract":"<p>Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific liver disease and the second most frequent cause of jaundice in pregnancy, but the etiology of it is poorly understood. By collecting blood and fecal samples from 12 healthy pregnant women (CON group) and 32 ICP patients (ICP group) in China, we performed 16s rRNA gene sequencing and analyzed microbial diversity. The results showed a decrease in species richness of the ICP group compared to that in the CON group, with a significant difference in species diversity between the two groups. Differential analysis revealed the following biomarkers: s__unclassified__Megamonas, g__Megamonas, f__Selenomonadaceae, c__Bacilli, and o__Lactobacillales. Importantly, we found a decrease in species richness of Selenomonadaceae at the family level and decreased bacilli at the class level in ICP patients. Correlation network analysis and functional gene prediction were performed accordingly. Our data provided new information linking microbiota and ICP, and are possibly helpful for further exploration of the disease.</p>","PeriodicalId":9844,"journal":{"name":"Cellular Microbiology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/1710924","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142573919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pseudomonas aeruginosa, an antibiotic-resistant opportunistic pathogen, poses significant challenges in treating infections, particularly in immunocompromised individuals. This review explores current and future innovative approaches to suppress its growth and virulence. We delve into the bacterium’s virulence factors, discussing existing strategies like antibiotics, bacteriophages, probiotics, and small-molecule inhibitors. Additionally, novel approaches, including RNA interference, CRISPR-Cas systems, and nanotechnology, show promise in preclinical studies. Despite advancements, challenges persist, prompting the need for a multifaceted approach targeting various aspects of P. aeruginosa pathogenesis for effective infection management. This review provides a comprehensive perspective on the status and future directions of innovative strategies against P. aeruginosa.
{"title":"Innovative Approaches to Suppressing Pseudomonas aeruginosa Growth and Virulence: Current Status and Future Directions","authors":"Sandip Patil, Xiaowen Chen, Feiqiu Wen","doi":"10.1155/2024/7938723","DOIUrl":"https://doi.org/10.1155/2024/7938723","url":null,"abstract":"<p><i>Pseudomonas aeruginosa</i>, an antibiotic-resistant opportunistic pathogen, poses significant challenges in treating infections, particularly in immunocompromised individuals. This review explores current and future innovative approaches to suppress its growth and virulence. We delve into the bacterium’s virulence factors, discussing existing strategies like antibiotics, bacteriophages, probiotics, and small-molecule inhibitors. Additionally, novel approaches, including RNA interference, CRISPR-Cas systems, and nanotechnology, show promise in preclinical studies. Despite advancements, challenges persist, prompting the need for a multifaceted approach targeting various aspects of <i>P. aeruginosa</i> pathogenesis for effective infection management. This review provides a comprehensive perspective on the status and future directions of innovative strategies against <i>P. aeruginosa.</i></p>","PeriodicalId":9844,"journal":{"name":"Cellular Microbiology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/7938723","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Weiqi Dong, Panpan Du, Ruisen Huang, Shuoyan Lv, Hong Chen, Songlei Guan
Objectives: Subinhibitory concentration of antibiotics in the environment is an important risk factor for the horizontal transmission of antibiotic resistance genes (ARGs). The signaling mechanism of resistance gene transmission remains unknown. The aim of this study was to investigate whether indole could be used as a molecular signal to help the spread of ARGs under the stress of subinhibitory concentrations of antibiotics.
Methods: The effect of indole on conjugation frequency was investigated through a conjugation test, and its effect on the Type IV secretion system and pili gene expression of E. coli was observed. Meanwhile, we were investigating the trend of changes in indole regulatory factors ibpA, tnaA, and concentration pumps. Subsequently, we predicted the receptors that specifically bind to indole. Finally, our study focused on elucidating the regulatory mechanism of indole synthesis.
Results: Conjugate frequency was significantly increased under 1/5MIC concentration cefotaxime stress. The transferred ARGs were blaCTX-M and foxA. The mobile plasmid was IncY or IncI2. Meanwhile, the concentration of endogenous indole was also significantly increased. And, surprisingly, inhibition of endogenous indole production resulted in a significant decrease in conjugate frequency. However, the conjugate frequency increased once again when the strains reacquired the exogenous indole. Furthermore, the fluctuation trends of indole-regulated factor (ibpA, tnaA) mRNA and concentration pumps (acrEF, mtr) mRNA consistently with that of indole. Then, we found that the receptors of indole may be four targets of TCSs: CreC, PhoB, AtoC, and UhpA. More than that, when strains retrieved the exogenous indole again, the mRNA levels of T4SS (virB2, virB6, and virD4) and pppA (coding Pili precursor) genes significantly increased. This indicates that there is a close relationship between indole and conjugated channels, which are necessary for horizontal transfer of genetic material. And then, the trends of indole and tnaA mRNA were consistent with that of ibpA (one of SOS response). So, this result confirmed that indole was regulated by SOS response under subinhibitory concentrations of antibiotics.
Conclusions: It is always known that subinhibitory concentrations of antibiotics stimulate an SOS response in E. coli, which helps in the horizontal spread of ARGs by modulating indole.
{"title":"Indole May Help the Horizontal Transmission of Antibiotic Resistance Genes in E. coli Under Subinhibitory Concentrations of Cefotaxime Stress","authors":"Weiqi Dong, Panpan Du, Ruisen Huang, Shuoyan Lv, Hong Chen, Songlei Guan","doi":"10.1155/2024/9018205","DOIUrl":"https://doi.org/10.1155/2024/9018205","url":null,"abstract":"<p><b>Objectives:</b> Subinhibitory concentration of antibiotics in the environment is an important risk factor for the horizontal transmission of antibiotic resistance genes (ARGs). The signaling mechanism of resistance gene transmission remains unknown. The aim of this study was to investigate whether indole could be used as a molecular signal to help the spread of ARGs under the stress of subinhibitory concentrations of antibiotics.</p><p><b>Methods:</b> The effect of indole on conjugation frequency was investigated through a conjugation test, and its effect on the Type IV secretion system and pili gene expression of <i>E. coli</i> was observed. Meanwhile, we were investigating the trend of changes in indole regulatory factors i<i>bpA</i>, <i>tnaA</i>, and concentration pumps. Subsequently, we predicted the receptors that specifically bind to indole. Finally, our study focused on elucidating the regulatory mechanism of indole synthesis.</p><p><b>Results:</b> Conjugate frequency was significantly increased under 1/5MIC concentration cefotaxime stress. The transferred ARGs were <i>bla<sub>CTX-M</sub></i> and <i>foxA</i>. The mobile plasmid was IncY or IncI2. Meanwhile, the concentration of endogenous indole was also significantly increased. And, surprisingly, inhibition of endogenous indole production resulted in a significant decrease in conjugate frequency. However, the conjugate frequency increased once again when the strains reacquired the exogenous indole. Furthermore, the fluctuation trends of indole-regulated factor (<i>ibpA</i>, <i>tnaA</i>) mRNA and concentration pumps (<i>acrEF</i>, <i>mtr</i>) mRNA consistently with that of indole. Then, we found that the receptors of indole may be four targets of TCSs: CreC, PhoB, AtoC, and UhpA. More than that, when strains retrieved the exogenous indole again, the mRNA levels of T4SS (<i>virB2</i>, <i>virB6</i>, and <i>virD4</i>) and <i>pppA</i> (<i>coding Pili precursor</i>) genes significantly increased. This indicates that there is a close relationship between indole and conjugated channels, which are necessary for horizontal transfer of genetic material. And then, the trends of indole and <i>tnaA</i> mRNA were consistent with that of <i>ibpA</i> (one of SOS response). So, this result confirmed that indole was regulated by SOS response under subinhibitory concentrations of antibiotics.</p><p><b>Conclusions:</b> It is always known that subinhibitory concentrations of antibiotics stimulate an SOS response in <i>E. coli</i>, which helps in the horizontal spread of ARGs by modulating indole.</p>","PeriodicalId":9844,"journal":{"name":"Cellular Microbiology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/9018205","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142152268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Federica Dell’Annunziata, Veronica Folliero, Roberta Della Marca, Francesca Palma, Giuseppina Sanna, Anna De Filippis, Pasquale Pagliano, Aldo Manzin, Gianluigi Franci, Massimiliano Galdiero
Drug repurposing is sparking considerable interest due to reduced costs and development times. The current study details the screening of teniposide, an antitumor drug, for its antibacterial activity against both Gram-positive and Gram-negative strains, with a focus on Staphylococcus epidermidis (S. epidermidis), the primary causative agent of nosocomial and transplant-related infections. The cytotoxicity was evaluated through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and hemolysis assays on immortalized human keratinocyte (HaCaT) cells and human erythrocytes. After 20 h of treatment, the recorded concentrations causing 50% cytotoxicity (CC50) and hemolysis (HC50) were 33.63 and 121.55 μg/mL, respectively. The antibacterial screening employed disk diffusion, the broth microdilution method, LIVE/DEAD staining, and a time-killing test. The drug induced a growth inhibitory area in the 22–25 mm range for all Gram-positive strains. The minimum concentration that inhibited 90% of bacteria (MIC90) was 6.25 μg/mL against Staphylococcus aureus and S. epidermidis and 12.5 μg/mL versus Enterococcus faecalis, exhibiting bactericidal action. Treatment resulted in S. epidermidis cell morphology deformities and damage to the cell membrane, observed by scanning electron microscopy (SEM). Mechanism analysis revealed alterations in the selective permeability of the cell membrane, observed under the fluorescence microscope by the absorption of propidium iodide (PI). The synergistic effect of teniposide in combination with fosfomycin and gentamicin was documented by disk diffusion and checkboard assay, recording a fractional inhibitory concentration index (FICI) of 0.28 and 0.37, respectively. The drug’s action on S. epidermidis biofilm biomass was investigated using crystal violet (CV) and MTT. Teniposide affected biofilm viability in a dose-dependent manner, inducing, at a concentration of 3.12 μg/mL, a matrix inhibition of about 42% and 61%, with a sessile metabolic activity of 54% and 24% recorded after 2 and 24 h, respectively. Overall, this study suggests the potential repurposing of the anticancer drug teniposide as a therapeutic agent to counteract S. epidermidis infections.
{"title":"Repurposing the Antibacterial Activity of the Drug Teniposide Against Gram-Positive Bacteria","authors":"Federica Dell’Annunziata, Veronica Folliero, Roberta Della Marca, Francesca Palma, Giuseppina Sanna, Anna De Filippis, Pasquale Pagliano, Aldo Manzin, Gianluigi Franci, Massimiliano Galdiero","doi":"10.1155/2024/9389729","DOIUrl":"https://doi.org/10.1155/2024/9389729","url":null,"abstract":"<p>Drug repurposing is sparking considerable interest due to reduced costs and development times. The current study details the screening of teniposide, an antitumor drug, for its antibacterial activity against both Gram-positive and Gram-negative strains, with a focus on <i>Staphylococcus epidermidis</i> (<i>S. epidermidis</i>), the primary causative agent of nosocomial and transplant-related infections. The cytotoxicity was evaluated through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and hemolysis assays on immortalized human keratinocyte (HaCaT) cells and human erythrocytes. After 20 h of treatment, the recorded concentrations causing 50% cytotoxicity (CC<sub>50</sub>) and hemolysis (HC<sub>50</sub>) were 33.63 and 121.55 <i>μ</i>g/mL, respectively. The antibacterial screening employed disk diffusion, the broth microdilution method, LIVE/DEAD staining, and a time-killing test. The drug induced a growth inhibitory area in the 22–25 mm range for all Gram-positive strains. The minimum concentration that inhibited 90% of bacteria (MIC<sub>90</sub>) was 6.25 <i>μ</i>g/mL against <i>Staphylococcus aureus</i> and <i>S. epidermidis</i> and 12.5 <i>μ</i>g/mL versus <i>Enterococcus faecalis</i>, exhibiting bactericidal action. Treatment resulted in <i>S. epidermidis</i> cell morphology deformities and damage to the cell membrane, observed by scanning electron microscopy (SEM). Mechanism analysis revealed alterations in the selective permeability of the cell membrane, observed under the fluorescence microscope by the absorption of propidium iodide (PI). The synergistic effect of teniposide in combination with fosfomycin and gentamicin was documented by disk diffusion and checkboard assay, recording a fractional inhibitory concentration index (FICI) of 0.28 and 0.37, respectively. The drug’s action on <i>S. epidermidis</i> biofilm biomass was investigated using crystal violet (CV) and MTT. Teniposide affected biofilm viability in a dose-dependent manner, inducing, at a concentration of 3.12 <i>μ</i>g/mL, a matrix inhibition of about 42% and 61%, with a sessile metabolic activity of 54% and 24% recorded after 2 and 24 h, respectively. Overall, this study suggests the potential repurposing of the anticancer drug teniposide as a therapeutic agent to counteract <i>S. epidermidis</i> infections.</p>","PeriodicalId":9844,"journal":{"name":"Cellular Microbiology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/9389729","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142077902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Magdalena K. Bielecka, Liku B. Tezera, Elena Konstantinopoulou, Nicola Casali, Orestis L. Katsamenis, Ximena Gonzalo, Francis Drobniewski, Paul T. Elkington
Tuberculosis (TB) remains a persistent epidemic, and the emergence of drug-resistant Mycobacterium tuberculosis (Mtb) presents a global healthcare threat. While some new agents have been successfully introduced, innovative technologies to evaluate emerging anti-TB compounds are required to inform transformative approaches. Mtb is an obligate human pathogen, and consequently utilizing models that are consistent with human disease is likely to be critical. We have developed a human 3-dimensional (3-D) cell culture model that reflects human disease gene expression patterns and causes Mtb to become pyrazinamide sensitive in vitro. Here, we identify key differences in virulence between the standard laboratory strain, Mtb H37Rv, and clinical isolates. We demonstrate that Mtb H37Rv is attenuated in the 3-D system, more susceptible to antibiotics and hyperinflammatory compared to clinical isolates. Prolonged in vitro culture of a clinical strain leads to attenuation. We then characterise antibiotic sensitivity of multi-drug-resistant Mtb within the 3-D model and define relative bactericidal activity. Finally, we demonstrate that verapamil increases efficacy of bedaquiline and delamanid antibiotic therapy. Taken together, our findings suggest that studying virulent clinical strains in an advanced cell culture system is a powerful adjunct to established methodologies to evaluate new interventions for TB.
{"title":"Three-Dimensional Culture Modelling Reveals Divergent Mycobacterium tuberculosis Virulence and Antimicrobial Treatment Response","authors":"Magdalena K. Bielecka, Liku B. Tezera, Elena Konstantinopoulou, Nicola Casali, Orestis L. Katsamenis, Ximena Gonzalo, Francis Drobniewski, Paul T. Elkington","doi":"10.1155/2024/6458900","DOIUrl":"10.1155/2024/6458900","url":null,"abstract":"<p>Tuberculosis (TB) remains a persistent epidemic, and the emergence of drug-resistant <i>Mycobacterium tuberculosis</i> (Mtb) presents a global healthcare threat. While some new agents have been successfully introduced, innovative technologies to evaluate emerging anti-TB compounds are required to inform transformative approaches. Mtb is an obligate human pathogen, and consequently utilizing models that are consistent with human disease is likely to be critical. We have developed a human 3-dimensional (3-D) cell culture model that reflects human disease gene expression patterns and causes Mtb to become pyrazinamide sensitive <i>in vitro</i>. Here, we identify key differences in virulence between the standard laboratory strain, Mtb H37Rv, and clinical isolates. We demonstrate that Mtb H37Rv is attenuated in the 3-D system, more susceptible to antibiotics and hyperinflammatory compared to clinical isolates. Prolonged <i>in vitro</i> culture of a clinical strain leads to attenuation. We then characterise antibiotic sensitivity of multi-drug-resistant Mtb within the 3-D model and define relative bactericidal activity. Finally, we demonstrate that verapamil increases efficacy of bedaquiline and delamanid antibiotic therapy. Taken together, our findings suggest that studying virulent clinical strains in an advanced cell culture system is a powerful adjunct to established methodologies to evaluate new interventions for TB.</p>","PeriodicalId":9844,"journal":{"name":"Cellular Microbiology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140832320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Pillon, C. Michard, N. Baïlo, J. Bougnon, K. Picq, O. Dubois, C. Andrea, L. Attaiech, V. Daubin, S. Jarraud, E. Kay, P. Doublet
Host actin cytoskeleton is often targeted by pathogenic bacteria through the secretion of effectors. Legionella pneumophila virulence relies on the injection of the largest known arsenal of bacterial proteins, over 300 Dot/Icm type 4 secretion system effectors, into the host cytosol. Here, we define the functional interactions between VipA and LegK2, two effectors with antagonistic activities towards actin polymerization that have been proposed to interfere with the endosomal pathway. We confirmed the prominent role of LegK2 effector in Legionella infection, as the deletion of legK2 results in defects in the inhibition of actin polymerization at the Legionella-containing vacuole, as well as in endosomal escape of bacteria and subsequent intracellular replication. More importantly, we observed the restoration of the ΔlegK2 mutant defects, upon deletion of vipA gene, making LegK2/VipA a novel example of effector-effector suppression pair that targets the actin cytoskeleton and whose functional interaction impacts L. pneumophila virulence. We demonstrated that LegK2 and VipA do not modulate each other’s activity in a “metaeffector” relationship. Instead, the antagonistic activities of the LegK2/VipA effector pair would target different substrates, Arp2/3 for LegK2 and G-actin for VipA, to temporally control actin polymerization at the LCV and interfere with phagosome maturation and endosome recycling, thus contributing to the intracellular life cycle of the bacterium. Strikingly, the functional interaction between LegK2 and VipA is consolidated by an evolutionary history that has refined the best effector repertoire for the benefit of L. pneumophila virulence.
{"title":"Dual Control of Host Actin Polymerization by a Legionella Effector Pair","authors":"M. Pillon, C. Michard, N. Baïlo, J. Bougnon, K. Picq, O. Dubois, C. Andrea, L. Attaiech, V. Daubin, S. Jarraud, E. Kay, P. Doublet","doi":"10.1155/2024/8896219","DOIUrl":"10.1155/2024/8896219","url":null,"abstract":"<p>Host actin cytoskeleton is often targeted by pathogenic bacteria through the secretion of effectors. <i>Legionella pneumophila</i> virulence relies on the injection of the largest known arsenal of bacterial proteins, over 300 Dot/Icm type 4 secretion system effectors, into the host cytosol. Here, we define the functional interactions between VipA and LegK2, two effectors with antagonistic activities towards actin polymerization that have been proposed to interfere with the endosomal pathway. We confirmed the prominent role of LegK2 effector in <i>Legionella</i> infection, as the deletion of <i>legK2</i> results in defects in the inhibition of actin polymerization at the <i>Legionella</i>-containing vacuole, as well as in endosomal escape of bacteria and subsequent intracellular replication. More importantly, we observed the restoration of the <i>ΔlegK2</i> mutant defects, upon deletion of <i>vipA</i> gene, making LegK2/VipA a novel example of effector-effector suppression pair that targets the actin cytoskeleton and whose functional interaction impacts <i>L. pneumophila</i> virulence. We demonstrated that LegK2 and VipA do not modulate each other’s activity in a “metaeffector” relationship. Instead, the antagonistic activities of the LegK2/VipA effector pair would target different substrates, Arp2/3 for LegK2 and G-actin for VipA, to temporally control actin polymerization at the LCV and interfere with phagosome maturation and endosome recycling, thus contributing to the intracellular life cycle of the bacterium. Strikingly, the functional interaction between LegK2 and VipA is consolidated by an evolutionary history that has refined the best effector repertoire for the benefit of <i>L. pneumophila</i> virulence.</p>","PeriodicalId":9844,"journal":{"name":"Cellular Microbiology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139578777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sugumar Mohanasundaram, Porkodi Karthikeyan, Venkatesan Sampath, M. Anbazhagan, Sundramurthy Venkatesa Prabhu, Jamal M. Khaled, Muthu Thiruvengadam
Considering natural compounds for the antiviral effect is another opportunity for exploring novel drug candidates for severe acute respiratory syndrome coronavirus 2. The selected natural compounds were interacted using a molecular docking approach. The 3D structures of the main protease and papain-like protease were used for the virtual screening to detect the potent inhibitor against SARS-CoV-2. The top-scored compounds were further analyzed for absorption, digestion, metabolism, excretion, and toxicity properties and density functional theory analysis. Our results indicated that glycyrrhizin exhibited better docking scores of -9.5 kcal/mol with main protease and -9.7 kcal/mol with papain-like protease. Next to glycyrrhizin, rutin showed a better docking score of -9.1 kcal/mol and -9.2 kcal/mol with 3-chymotrypsin-like and papain-like proteases. Violaxanthin and naringin occupied the subsequent position in the docking score table with 3CL and PL proteases, respectively. In addition, the crucial properties like drug likeliness and pharmacokinetics of the compounds were determined. There is no significant toxicity identified.
{"title":"Molecular Docking, Dynamics Simulations, ADMET, and DFT Calculations: Combined In Silico Approach to Screen Natural Inhibitors of 3CL and PL Proteases of SARS-CoV-2","authors":"Sugumar Mohanasundaram, Porkodi Karthikeyan, Venkatesan Sampath, M. Anbazhagan, Sundramurthy Venkatesa Prabhu, Jamal M. Khaled, Muthu Thiruvengadam","doi":"10.1155/2024/6647757","DOIUrl":"10.1155/2024/6647757","url":null,"abstract":"<p>Considering natural compounds for the antiviral effect is another opportunity for exploring novel drug candidates for severe acute respiratory syndrome coronavirus 2. The selected natural compounds were interacted using a molecular docking approach. The 3D structures of the main protease and papain-like protease were used for the virtual screening to detect the potent inhibitor against SARS-CoV-2. The top-scored compounds were further analyzed for absorption, digestion, metabolism, excretion, and toxicity properties and density functional theory analysis. Our results indicated that glycyrrhizin exhibited better docking scores of -9.5 kcal/mol with main protease and -9.7 kcal/mol with papain-like protease. Next to glycyrrhizin, rutin showed a better docking score of -9.1 kcal/mol and -9.2 kcal/mol with 3-chymotrypsin-like and papain-like proteases. Violaxanthin and naringin occupied the subsequent position in the docking score table with 3CL and PL proteases, respectively. In addition, the crucial properties like drug likeliness and pharmacokinetics of the compounds were determined. There is no significant toxicity identified.</p>","PeriodicalId":9844,"journal":{"name":"Cellular Microbiology","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139476357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Han Li, Mingshuang Tang, Tao Zheng, Ming Yang, Youning Wang, Yating Shuai, Yan Li, Yibo Zhang, Dongfang Ma
Fusarium head blight (FHB) is a serious disease of wheat that threatens wheat production worldwide. In this study, high-throughput sequencing technology was used to analyze the rhizosphere soil microbial metagenomes of 4 wheat cultivars with different levels of resistance to FHB. The results showed that there were differences in the diversity, structure, and composition of rhizosphere microorganisms between resistant and sensitive varieties. The rhizosphere soil bacterial diversity of the resistant wheat varieties Su Mai 3 and Yang Mai 16 was higher than that of the susceptible wheat varieties Zheng Mai 9023 and Zhou Mai 20. The diversity of rhizosphere fungi in resistant varieties was lower than that in susceptible varieties, but the abundance was higher than that in susceptible varieties. Variety was found to alter the community structure of wheat rhizosphere microorganisms. Resistant varieties SM3 and YM16 and moderately susceptible variety ZM9023 had similar microbial community structure, while highly susceptible variety ZM20 was significantly different from other varieties. The study is aimed at analyzing the effects of wheat varieties of different resistance to FHB on the composition and abundance of rhizosphere soil microbial community to screen out bacteria or fungi that can be used to control FHB, providing the theoretical basis for FHB biological control.
小麦赤霉病(Fusarium head blight, FHB)是一种严重威胁小麦生产的小麦病害。本研究采用高通量测序技术对4个不同抗赤霉病水平小麦品种的根际土壤微生物宏基因组进行分析。结果表明,抗性品种和敏感品种在根际微生物的多样性、结构和组成上存在差异。抗性小麦品种苏麦3号和杨麦16根际土壤细菌多样性高于敏感小麦品种郑麦9023和周麦20。抗性品种的根际真菌多样性低于感病品种,但丰度高于感病品种。品种改变了小麦根际微生物的群落结构。耐药品种SM3、YM16与中感品种ZM9023微生物群落结构相似,而高感品种ZM20与其他品种差异显著。本研究旨在分析不同抗赤霉病小麦品种对根际土壤微生物群落组成及丰度的影响,筛选出可用于防治赤霉病的细菌或真菌,为赤霉病生物防治提供理论依据。
{"title":"Differences in Rhizosphere Microbial Community Structure and Composition in Resistance and Susceptible Wheat to Fusarium Head Blight","authors":"Han Li, Mingshuang Tang, Tao Zheng, Ming Yang, Youning Wang, Yating Shuai, Yan Li, Yibo Zhang, Dongfang Ma","doi":"10.1155/2023/9963635","DOIUrl":"https://doi.org/10.1155/2023/9963635","url":null,"abstract":"Fusarium head blight (FHB) is a serious disease of wheat that threatens wheat production worldwide. In this study, high-throughput sequencing technology was used to analyze the rhizosphere soil microbial metagenomes of 4 wheat cultivars with different levels of resistance to FHB. The results showed that there were differences in the diversity, structure, and composition of rhizosphere microorganisms between resistant and sensitive varieties. The rhizosphere soil bacterial diversity of the resistant wheat varieties Su Mai 3 and Yang Mai 16 was higher than that of the susceptible wheat varieties Zheng Mai 9023 and Zhou Mai 20. The diversity of rhizosphere fungi in resistant varieties was lower than that in susceptible varieties, but the abundance was higher than that in susceptible varieties. Variety was found to alter the community structure of wheat rhizosphere microorganisms. Resistant varieties SM3 and YM16 and moderately susceptible variety ZM9023 had similar microbial community structure, while highly susceptible variety ZM20 was significantly different from other varieties. The study is aimed at analyzing the effects of wheat varieties of different resistance to FHB on the composition and abundance of rhizosphere soil microbial community to screen out bacteria or fungi that can be used to control FHB, providing the theoretical basis for FHB biological control.","PeriodicalId":9844,"journal":{"name":"Cellular Microbiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135869727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Timothy R. Ganderton, Daniel Ghete, Karen Hogg, Graeme J. Park, Christoph G. Baumann, Anthony J. Wilkinson, Paul R. Pryor
Rhodococcus equi is a Gram-positive facultative intracellular pathogen associated with life-threatening bronchopneumonial disease in foals. Key to R. equi’s intracellular survival in host macrophages is the production of virulence associated proteins (Vaps). Numerous vap genes are found on virulence plasmids isolated from different species, and the Vaps share a high degree of sequence identity. VapA has been extensively studied, and although vapK and vapN genes from other R. equi virulence plasmids have been shown to be essential for R. equi intracellular survival, their mode of action is less characterised. We, therefore, examined whether VapK and VapN worked mechanistically in the same way as VapA. Indeed, like VapA, VapK and VapN neutralised lysosomal pH and reduced lysosomal hydrolase activity. A loss of VapA and R. equi virulence could be regained by the presence of either VapK or VapN. The acid-neutralisation activity was also observed to a lesser extent with VapB. There was a differential activity across these virulence-promoting Vaps with the most “acid-neutralising” activity found with VapN, then VapA and K, and finally VapB. These data suggest that VapA production, which is often found in equine infections, can be substituted by VapK and B (produced by plasmids often found in porcine species) or VapN (produced by plasmids often isolated in bovine and human samples). These data imply that the molecular mechanism(s) that VapA uses to neutralise lysosomal acidity should also be seen in VapN and K which will help guide researchers in identifying their precise mode of action and aid the future development of targeted therapeutics.
{"title":"Commonality of Virulence-Promoting Function in Rhodococcus equi Virulence Associated Proteins (Vaps)","authors":"Timothy R. Ganderton, Daniel Ghete, Karen Hogg, Graeme J. Park, Christoph G. Baumann, Anthony J. Wilkinson, Paul R. Pryor","doi":"10.1155/2023/9141112","DOIUrl":"https://doi.org/10.1155/2023/9141112","url":null,"abstract":"Rhodococcus equi is a Gram-positive facultative intracellular pathogen associated with life-threatening bronchopneumonial disease in foals. Key to R. equi’s intracellular survival in host macrophages is the production of virulence associated proteins (Vaps). Numerous vap genes are found on virulence plasmids isolated from different species, and the Vaps share a high degree of sequence identity. VapA has been extensively studied, and although vapK and vapN genes from other R. equi virulence plasmids have been shown to be essential for R. equi intracellular survival, their mode of action is less characterised. We, therefore, examined whether VapK and VapN worked mechanistically in the same way as VapA. Indeed, like VapA, VapK and VapN neutralised lysosomal pH and reduced lysosomal hydrolase activity. A loss of VapA and R. equi virulence could be regained by the presence of either VapK or VapN. The acid-neutralisation activity was also observed to a lesser extent with VapB. There was a differential activity across these virulence-promoting Vaps with the most “acid-neutralising” activity found with VapN, then VapA and K, and finally VapB. These data suggest that VapA production, which is often found in equine infections, can be substituted by VapK and B (produced by plasmids often found in porcine species) or VapN (produced by plasmids often isolated in bovine and human samples). These data imply that the molecular mechanism(s) that VapA uses to neutralise lysosomal acidity should also be seen in VapN and K which will help guide researchers in identifying their precise mode of action and aid the future development of targeted therapeutics.","PeriodicalId":9844,"journal":{"name":"Cellular Microbiology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136294886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}