Prediction of the half-lives of polychlorinated biphenyls based on the IEF-PCM calculations

IF 2.4 Q3 Computer Science Journal of Theoretical & Computational Chemistry Pub Date : 2019-12-02 DOI:10.1142/s0219633619500330
Shi-Jun Liao, Xinliang Yu, Jianfang Chen, Xianwei Huang
{"title":"Prediction of the half-lives of polychlorinated biphenyls based on the IEF-PCM calculations","authors":"Shi-Jun Liao, Xinliang Yu, Jianfang Chen, Xianwei Huang","doi":"10.1142/s0219633619500330","DOIUrl":null,"url":null,"abstract":"Three-dimensional structures of 62 polychlorinated biphenyl (PCB) congeners were optimized with the integral equation formalism polarizable continuum model (IEF-PCM) in combination with the density functional theory (DFT) method at 6-31G(d) level. By applying support vector machine (SVM) algorithm, a nonlinear quantitative structure–property relationship (QSPR) model was built to predict half-lives (log [Formula: see text]) of 62 PCBs in juvenile rainbow trout. The optimal SVM model based on the parameters [Formula: see text] of 854.721 and [Formula: see text] of 0.0565 produces the root-mean-square (rms) errors of 0.0352 for the training set and 0.0446 for the test set, which are less than that of the previous models reported. The results suggest that it is feasible to build SVM models for the half-lives of PCBs with IEF-PCM and B3LYP/6-31G(d) for deriving structural descriptors.","PeriodicalId":49976,"journal":{"name":"Journal of Theoretical & Computational Chemistry","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2019-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/s0219633619500330","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical & Computational Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219633619500330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2

Abstract

Three-dimensional structures of 62 polychlorinated biphenyl (PCB) congeners were optimized with the integral equation formalism polarizable continuum model (IEF-PCM) in combination with the density functional theory (DFT) method at 6-31G(d) level. By applying support vector machine (SVM) algorithm, a nonlinear quantitative structure–property relationship (QSPR) model was built to predict half-lives (log [Formula: see text]) of 62 PCBs in juvenile rainbow trout. The optimal SVM model based on the parameters [Formula: see text] of 854.721 and [Formula: see text] of 0.0565 produces the root-mean-square (rms) errors of 0.0352 for the training set and 0.0446 for the test set, which are less than that of the previous models reported. The results suggest that it is feasible to build SVM models for the half-lives of PCBs with IEF-PCM and B3LYP/6-31G(d) for deriving structural descriptors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于IEF-PCM计算的多氯联苯半衰期预测
采用积分方程形式极化连续统模型(IEF-PCM)结合密度泛函理论(DFT)方法,对62种多氯联苯(PCB)同系物在6-31G(d)水平上的三维结构进行了优化。应用支持向量机(SVM)算法,建立非线性定量结构-性质关系(QSPR)模型,预测虹鳟鱼幼鱼体内62种多氯联苯的半衰期(log[公式:见文])。基于参数[公式:见文]为854.721,[公式:见文]为0.0565的最优SVM模型,训练集的均方根误差为0.0352,测试集的均方根误差为0.0446,均小于之前报道的模型。结果表明,利用IEF-PCM和B3LYP/6-31G(d)建立多氯联苯半衰期SVM模型来推导结构描述符是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
审稿时长
3 months
期刊介绍: The Journal of Theoretical and Computational Chemistry (JTCC) is an international interdisciplinary journal aimed at providing comprehensive coverage on the latest developments and applications of research in the ever-expanding field of theoretical and computational chemistry. JTCC publishes regular articles and reviews on new methodology, software, web server and database developments. The applications of existing theoretical and computational methods which produce significant new insights into important problems are also welcomed. Papers reporting joint computational and experimental investigations are encouraged. The journal will not consider manuscripts reporting straightforward calculations of the properties of molecules with existing software packages without addressing a significant scientific problem. Areas covered by the journal include molecular dynamics, computer-aided molecular design, modeling effects of mutation on stability and dynamics of macromolecules, quantum mechanics, statistical mechanics and other related topics.
期刊最新文献
A TD-DFT Study for the Excited State Calculations of Microhydration of N-Acetyl-Phenylalaninylamide (NAPA) Design of New Thiadiazole Derivatives with Improved Antidiabetic Activity Designing Artemisinins with Antimalarial Potential, Combining Molecular Electrostatic Potential, Ligand-Heme Interaction and Multivariate Models The in vitro anti-Leishmania Effect of Zingiber officinale Extract on Promastigotes and Amastigotes of Leishmania major and Leishmania tropica In Silico Docking of Rhodanine Derivatives and 3D-QSAR Study to Identify Potent Prostate Cancer Inhibitors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1