P. Moska, G. Adamiec, Z. Jary, A. Bluszcz, G. Poręba, N. Piotrowska, M. Krawczyk, J. Skurzyński
{"title":"Luminescence chronostratigraphy for the loess deposits in Złota, Poland","authors":"P. Moska, G. Adamiec, Z. Jary, A. Bluszcz, G. Poręba, N. Piotrowska, M. Krawczyk, J. Skurzyński","doi":"10.1515/geochr-2015-0073","DOIUrl":null,"url":null,"abstract":"Abstract Loess formations in Poland display a close relationship with cooling and warming trends of the Northern Hemisphere during the Pleistocene. Loess sequences sensitively record regional palaeoclimatic and palaeoecological changes. The Złota loess profile (21°39’E, 50°39’N) provides a unique opportunity to reconstruct climate conditions in the past in this part of Poland. This continuous sequence of loess and palaeosol deposits allows to distinguish between warmer and more humid climate which is favourable for soil development and much colder and dry periods which are conducive to loess accumulation. The silty and sandy aeolian material originates mainly from weathered rock surfaces affected by frost shattering or from glaciofluvial/fluvial deposits of river flood plains. In Poland, loess and loess-like formations occur in the southern part of the country, mostly in the south polish uplands, i.e. in the Lublin, Sandomierz, and Cracow Uplands. We used different techniques to establish a chronological framework for this site. 21 samples for luminescence dating were collected from the investigated loess profile in Złota. Infrared post-IR IRSL dating method was applied to the polymineral fine grains (4–11µm). The dating results are accompanied by detailed analyses of the geochemical composition, organic carbon and carbonate. Also, analysis of magnetic susceptibility and grain-size distribution were investigated. Based on such a large stratigraphic dataset an age-depth model using OxCal has also been constructed for this site.","PeriodicalId":50421,"journal":{"name":"Geochronometria","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2018-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochronometria","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1515/geochr-2015-0073","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 17
Abstract
Abstract Loess formations in Poland display a close relationship with cooling and warming trends of the Northern Hemisphere during the Pleistocene. Loess sequences sensitively record regional palaeoclimatic and palaeoecological changes. The Złota loess profile (21°39’E, 50°39’N) provides a unique opportunity to reconstruct climate conditions in the past in this part of Poland. This continuous sequence of loess and palaeosol deposits allows to distinguish between warmer and more humid climate which is favourable for soil development and much colder and dry periods which are conducive to loess accumulation. The silty and sandy aeolian material originates mainly from weathered rock surfaces affected by frost shattering or from glaciofluvial/fluvial deposits of river flood plains. In Poland, loess and loess-like formations occur in the southern part of the country, mostly in the south polish uplands, i.e. in the Lublin, Sandomierz, and Cracow Uplands. We used different techniques to establish a chronological framework for this site. 21 samples for luminescence dating were collected from the investigated loess profile in Złota. Infrared post-IR IRSL dating method was applied to the polymineral fine grains (4–11µm). The dating results are accompanied by detailed analyses of the geochemical composition, organic carbon and carbonate. Also, analysis of magnetic susceptibility and grain-size distribution were investigated. Based on such a large stratigraphic dataset an age-depth model using OxCal has also been constructed for this site.
期刊介绍:
Geochronometria is aimed at integrating scientists developing different methods of absolute chronology and using them in different fields of earth and other natural sciences and archaeology. The methods in use are e.g. radiocarbon, stable isotopes, isotopes of natural decay series, optically stimulated luminescence, thermoluminescence, EPR/ESR, dendrochronology, varve chronology. The journal publishes papers that are devoted to developing the dating methods as well as studies concentrating on their applications in geology, palaeoclimatology, palaeobiology, palaeohydrology, geocgraphy and archaeology etc.