Structure-Based Drug Design of RdRp Inhibitors against SARS-CoV-2

IF 8.6 2区 化学 Q1 Chemistry Topics in Current Chemistry Pub Date : 2023-06-15 DOI:10.1007/s41061-023-00432-x
Kiran Shehzadi, Afsheen Saba, Mingjia Yu, Jianhua Liang
{"title":"Structure-Based Drug Design of RdRp Inhibitors against SARS-CoV-2","authors":"Kiran Shehzadi,&nbsp;Afsheen Saba,&nbsp;Mingjia Yu,&nbsp;Jianhua Liang","doi":"10.1007/s41061-023-00432-x","DOIUrl":null,"url":null,"abstract":"<div><p>The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a worldwide pandemic since 2019, spreading rapidly and posing a significant threat to human health and life. With over 6 billion confirmed cases of the virus, the need for effective therapeutic drugs has become more urgent than ever before. RNA-dependent RNA polymerase (RdRp) is crucial in viral replication and transcription, catalysing viral RNA synthesis and serving as a promising therapeutic target for developing antiviral drugs. In this article, we explore the inhibition of RdRp as a potential treatment for viral diseases, analysing the structural information of RdRp in virus proliferation and summarizing the reported inhibitors’ pharmacophore features and structure–activity relationship profiles. We hope that the information provided by this review will aid in structure-based drug design and aid in the global fight against SARS-CoV-2 infection.</p><h3>Graphical Abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":"381 5","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Current Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s41061-023-00432-x","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 2

Abstract

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a worldwide pandemic since 2019, spreading rapidly and posing a significant threat to human health and life. With over 6 billion confirmed cases of the virus, the need for effective therapeutic drugs has become more urgent than ever before. RNA-dependent RNA polymerase (RdRp) is crucial in viral replication and transcription, catalysing viral RNA synthesis and serving as a promising therapeutic target for developing antiviral drugs. In this article, we explore the inhibition of RdRp as a potential treatment for viral diseases, analysing the structural information of RdRp in virus proliferation and summarizing the reported inhibitors’ pharmacophore features and structure–activity relationship profiles. We hope that the information provided by this review will aid in structure-based drug design and aid in the global fight against SARS-CoV-2 infection.

Graphical Abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于结构的抗SARS-CoV-2 RdRp抑制剂药物设计
2019年以来,严重急性呼吸综合征冠状病毒2型(SARS-CoV-2)在全球范围内大流行,传播迅速,对人类健康和生命构成重大威胁。由于该病毒确诊病例超过60亿,对有效治疗药物的需求比以往任何时候都更加迫切。RNA依赖性RNA聚合酶(RdRp)在病毒复制和转录中起着至关重要的作用,催化病毒RNA合成,是开发抗病毒药物的一个有希望的治疗靶点。在本文中,我们探讨了抑制RdRp作为一种潜在的病毒性疾病的治疗方法,分析了RdRp在病毒增殖中的结构信息,总结了已报道的抑制剂的药效团特征和构效关系。我们希望本综述提供的信息将有助于基于结构的药物设计,并有助于全球抗击SARS-CoV-2感染。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Topics in Current Chemistry
Topics in Current Chemistry 化学-化学综合
CiteScore
11.70
自引率
1.20%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Topics in Current Chemistry provides in-depth analyses and forward-thinking perspectives on the latest advancements in chemical research. This renowned journal encompasses various domains within chemical science and their intersections with biology, medicine, physics, and materials science. Each collection within the journal aims to offer a comprehensive understanding, accessible to both academic and industrial readers, of emerging research in an area that captivates a broader scientific community. In essence, Topics in Current Chemistry illuminates cutting-edge chemical research, fosters interdisciplinary collaboration, and facilitates knowledge-sharing among diverse scientific audiences.
期刊最新文献
Organelle-Specific Smart Supramolecular Materials for Bioimaging and Theranostics Application Recent Advances in C–O Bond Cleavage of Aryl, Vinyl, and Benzylic Ethers Porous Polymer Sorbents in Micro Solid Phase Extraction: Applications, Advantages, and Challenges A Comprehensive Exploration of the Synergistic Relationship between DMSO and Peroxide in Organic Synthesis Schiff Base-Based Molybdenum Complexes as Green Catalyst in the Epoxidation Reaction: A Minireview
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1