Pub Date : 2025-03-05DOI: 10.1007/s41061-025-00495-y
Kim E. de Roode, Raffaella Rossin, Marc S. Robillard
In the last decade, the use of bioorthogonal chemistry toward medical applications has increased tremendously. Besides being useful for the production of pharmaceuticals, the efficient, nontoxic reactions open possibilities for the development of therapies that rely on in vivo chemistry between two bioorthogonal components. Here we discuss the latest developments in bioorthogonal chemistry, with a focus on their use in living organisms, the translation from model systems to humans, and the challenges encountered during preclinical development. We aim to provide the reader a broad presentation of the current state of the art and demonstrate the numerous possibilities that bioorthogonal reactions have for clinical use, now and in the near future.
{"title":"Toward Realization of Bioorthogonal Chemistry in the Clinic","authors":"Kim E. de Roode, Raffaella Rossin, Marc S. Robillard","doi":"10.1007/s41061-025-00495-y","DOIUrl":"10.1007/s41061-025-00495-y","url":null,"abstract":"<div><p>In the last decade, the use of bioorthogonal chemistry toward medical applications has increased tremendously. Besides being useful for the production of pharmaceuticals, the efficient, nontoxic reactions open possibilities for the development of therapies that rely on in vivo chemistry between two bioorthogonal components. Here we discuss the latest developments in bioorthogonal chemistry, with a focus on their use in living organisms, the translation from model systems to humans, and the challenges encountered during preclinical development. We aim to provide the reader a broad presentation of the current state of the art and demonstrate the numerous possibilities that bioorthogonal reactions have for clinical use, now and in the near future.</p></div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":"383 2","pages":""},"PeriodicalIF":8.6,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41061-025-00495-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143554060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carbon dioxide (CO2) is an abundant and readily available carbon source. Its transformation into high-added-value chemicals is a beneficial strategy, which mitigates greenhouse gas emissions and provides new raw material sources for the chemical industry. Among these chemicals, the aromatic carboxylic acids and derivatives have broad applications in medicine, pesticides, and materials science. Therefore, the carboxylation of C(sp2)-X (X = metal, halide, H, O, or S) bonds with CO2 to efficiently construct aromatic carboxylic acids and their derivatives is a synthetic strategy of significance. This review highlights the recent progress in constructing carboxylic acids and derivatives through the carboxylation of C(sp2)-X bonds with CO2 including literature published from 2000 to December 2024.