M. A. Rahman Bhuiyan, Ayub Ali, Md. Mohebbullah, M. Firoz Hossain, Ayub Nabi Khan, Lijing Wang
{"title":"Recycling of cotton apparel waste and its utilization as a thermal insulation layer in high performance clothing","authors":"M. A. Rahman Bhuiyan, Ayub Ali, Md. Mohebbullah, M. Firoz Hossain, Ayub Nabi Khan, Lijing Wang","doi":"10.1186/s40691-023-00342-y","DOIUrl":null,"url":null,"abstract":"<div><p>Recycling and converting textile waste into value-added products with enhanced functional properties pave the way toward a circular economy for sustainability. This research investigates the utilization of recycled cotton fiber from apparel cutting waste for fabricating high-performance thermal barrier fabrics. The physical characterization of the developed fabrics revealed a regular arrangement of fibers, consequently the uniform thickness of the fabric with no distortion on fiber surfaces due to the recycling operation of cotton waste. The developed fabrics also demonstrated a high softness index and low compression and bending average rigidity compared to the commercial fabric with similar thickness. The heat protection performance revealed an increase in fabric conductive and radiative heat resistance with increasing the amount of recycled cotton fiber in the fabrics. The inherent thermal resistance of cotton fiber and the low inter-fiber spacing because of their uniform orientation in the fabric lead to the high thermal resistance of developed fabrics. In the case of fabric air permeability concerning the clothing thermal comfort, no significant difference in breathability was observed among the test specimens. Besides, the moisture management profile of developed fabrics indicated the capability to create favorable thermal comfort within the clothing-skin microenvironment because of improved liquid transportation and diffusion of perspiration vapor through the fabric.</p></div>","PeriodicalId":555,"journal":{"name":"Fashion and Textiles","volume":"10 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://fashionandtextiles.springeropen.com/counter/pdf/10.1186/s40691-023-00342-y","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fashion and Textiles","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s40691-023-00342-y","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 2
Abstract
Recycling and converting textile waste into value-added products with enhanced functional properties pave the way toward a circular economy for sustainability. This research investigates the utilization of recycled cotton fiber from apparel cutting waste for fabricating high-performance thermal barrier fabrics. The physical characterization of the developed fabrics revealed a regular arrangement of fibers, consequently the uniform thickness of the fabric with no distortion on fiber surfaces due to the recycling operation of cotton waste. The developed fabrics also demonstrated a high softness index and low compression and bending average rigidity compared to the commercial fabric with similar thickness. The heat protection performance revealed an increase in fabric conductive and radiative heat resistance with increasing the amount of recycled cotton fiber in the fabrics. The inherent thermal resistance of cotton fiber and the low inter-fiber spacing because of their uniform orientation in the fabric lead to the high thermal resistance of developed fabrics. In the case of fabric air permeability concerning the clothing thermal comfort, no significant difference in breathability was observed among the test specimens. Besides, the moisture management profile of developed fabrics indicated the capability to create favorable thermal comfort within the clothing-skin microenvironment because of improved liquid transportation and diffusion of perspiration vapor through the fabric.
期刊介绍:
Fashion and Textiles aims to advance knowledge and to seek new perspectives in the fashion and textiles industry worldwide. We welcome original research articles, reviews, case studies, book reviews and letters to the editor.
The scope of the journal includes the following four technical research divisions:
Textile Science and Technology: Textile Material Science and Technology; Dyeing and Finishing; Smart and Intelligent Textiles
Clothing Science and Technology: Physiology of Clothing/Textile Products; Protective clothing ; Smart and Intelligent clothing; Sportswear; Mass customization ; Apparel manufacturing
Economics of Clothing and Textiles/Fashion Business: Management of the Clothing and Textiles Industry; Merchandising; Retailing; Fashion Marketing; Consumer Behavior; Socio-psychology of Fashion
Fashion Design and Cultural Study on Fashion: Aesthetic Aspects of Fashion Product or Design Process; Textiles/Clothing/Fashion Design; Fashion Trend; History of Fashion; Costume or Dress; Fashion Theory; Fashion journalism; Fashion exhibition.