Optimum feature selection for SHM of benchmark structures using efficient AI mechanism

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2021-04-01 DOI:10.12989/SSS.2021.27.4.623
Ramin Ghiasi, M. Ghasemi, T. Chan
{"title":"Optimum feature selection for SHM of benchmark structures using efficient AI mechanism","authors":"Ramin Ghiasi, M. Ghasemi, T. Chan","doi":"10.12989/SSS.2021.27.4.623","DOIUrl":null,"url":null,"abstract":"Structural Health Monitoring (SHM) is rapidly developing as a multi-disciplinary technology solution for condition assessment and performance evaluation of civil infrastructures. It consists of three parts: data collection, data processing (feature extraction/selection), and decision-making (feature classification). In this research, for effectively reducing a dimension of SHM data, various methods are proposed such as advanced feature extraction, feature subset selection using optimization algorithm, and effective surrogate model based on artificial intelligence methods. These frameworks enhance the capability of the SHM process to tackle with uncertainties and big data problem. To reach such goals, a framework based on three main blocks are proposed here: feature extraction block using wavelet pocket relative energy (WPRE), feature selection block using improved version of binary harmony search algorithm and finally feature classification block using wavelet weighted least square support vector machine (WWLS-SVM). The capability of the proposed framework is compared with various well known methods for each block. Results will be presented using metrics of precision, recall, accuracy and feature-reduction. Furthermore, to show the robustness of the proposed methods, six well-known benchmark datasets of SHM domain are studied. The results validate the suitability of the proposed methods in providing data reduction and accelerating damage detection process.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SSS.2021.27.4.623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 2

Abstract

Structural Health Monitoring (SHM) is rapidly developing as a multi-disciplinary technology solution for condition assessment and performance evaluation of civil infrastructures. It consists of three parts: data collection, data processing (feature extraction/selection), and decision-making (feature classification). In this research, for effectively reducing a dimension of SHM data, various methods are proposed such as advanced feature extraction, feature subset selection using optimization algorithm, and effective surrogate model based on artificial intelligence methods. These frameworks enhance the capability of the SHM process to tackle with uncertainties and big data problem. To reach such goals, a framework based on three main blocks are proposed here: feature extraction block using wavelet pocket relative energy (WPRE), feature selection block using improved version of binary harmony search algorithm and finally feature classification block using wavelet weighted least square support vector machine (WWLS-SVM). The capability of the proposed framework is compared with various well known methods for each block. Results will be presented using metrics of precision, recall, accuracy and feature-reduction. Furthermore, to show the robustness of the proposed methods, six well-known benchmark datasets of SHM domain are studied. The results validate the suitability of the proposed methods in providing data reduction and accelerating damage detection process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于高效AI机制的基准结构SHM特征优化选择
结构健康监测(SHM)作为民用基础设施状态评估和性能评价的多学科技术解决方案,正在迅速发展。它包括三个部分:数据收集、数据处理(特征提取/选择)和决策(特征分类)。为了有效地对SHM数据进行降维,本研究提出了先进的特征提取、基于优化算法的特征子集选择、基于人工智能方法的有效代理模型等方法。这些框架增强了SHM过程应对不确定性和大数据问题的能力。为了实现这一目标,本文提出了一个基于三个主要块的框架:基于小波口袋相对能量(WPRE)的特征提取块、基于改进的二元和谐搜索算法的特征选择块和基于小波加权最小二乘支持向量机(WWLS-SVM)的特征分类块。针对每个块,将所提出的框架的性能与各种已知方法进行了比较。结果将使用精度、召回率、准确性和特征减少的度量来呈现。此外,为了证明所提方法的鲁棒性,研究了六个SHM领域的知名基准数据集。结果验证了所提方法在提供数据减少和加速损伤检测过程方面的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1