Dynamics of the Marine Dissolved Organic Carbon Reservoir in Glacial Climate Simulations: The Importance of Biological Production

IF 3.2 2区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY Paleoceanography and Paleoclimatology Pub Date : 2023-07-01 DOI:10.1029/2022PA004522
Maya D. Gilchrist, Katsumi Matsumoto
{"title":"Dynamics of the Marine Dissolved Organic Carbon Reservoir in Glacial Climate Simulations: The Importance of Biological Production","authors":"Maya D. Gilchrist, Katsumi Matsumoto","doi":"10.1029/2022PA004522","DOIUrl":null,"url":null,"abstract":"The marine dissolved organic carbon (DOC) reservoir rivals the atmospheric carbon inventory in size. Recent work has suggested that the size of the DOC reservoir may respond to variations in sea temperature and global overturning circulation strength. Moreover, mobilization of marine DOC has been implicated in paleoclimate events including Cryogenian glaciation and Eocene hyperthermals. Despite these suggestions, the dynamics of the marine DOC reservoir are poorly understood, and previous carbon cycle modeling has generally assumed this reservoir to be static. In this study, we utilize an Earth system model of intermediate complexity to assess the response of the marine DOC reservoir to various glacial boundary conditions. Our results indicate that the marine DOC reservoir is responsive to glacial perturbations and may shrink or expand on the order of 10–100 Pg C. In contrast to recent studies that emphasize the importance of DOC degradation in driving the mobility of DOC reservoir, our study indicates the importance of DOC production. In the experiment under full glacial boundary conditions, for example, a 19% drop in net primary production leads to an 81 Pg C reduction in the DOC pool, without which the atmospheric CO2 concentration would have been lower by approximately 38 ppm by dissolved inorganic carbon changes alone. Thus, DOC reservoir variability is necessary to fully account for the simulated changes in atmospheric CO2 concentration. Our findings based on glacial experiments are corroborated in a different set of simulations using freshwater flux to induce weakening of the Atlantic meridional overturning circulation.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paleoceanography and Paleoclimatology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2022PA004522","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The marine dissolved organic carbon (DOC) reservoir rivals the atmospheric carbon inventory in size. Recent work has suggested that the size of the DOC reservoir may respond to variations in sea temperature and global overturning circulation strength. Moreover, mobilization of marine DOC has been implicated in paleoclimate events including Cryogenian glaciation and Eocene hyperthermals. Despite these suggestions, the dynamics of the marine DOC reservoir are poorly understood, and previous carbon cycle modeling has generally assumed this reservoir to be static. In this study, we utilize an Earth system model of intermediate complexity to assess the response of the marine DOC reservoir to various glacial boundary conditions. Our results indicate that the marine DOC reservoir is responsive to glacial perturbations and may shrink or expand on the order of 10–100 Pg C. In contrast to recent studies that emphasize the importance of DOC degradation in driving the mobility of DOC reservoir, our study indicates the importance of DOC production. In the experiment under full glacial boundary conditions, for example, a 19% drop in net primary production leads to an 81 Pg C reduction in the DOC pool, without which the atmospheric CO2 concentration would have been lower by approximately 38 ppm by dissolved inorganic carbon changes alone. Thus, DOC reservoir variability is necessary to fully account for the simulated changes in atmospheric CO2 concentration. Our findings based on glacial experiments are corroborated in a different set of simulations using freshwater flux to induce weakening of the Atlantic meridional overturning circulation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
冰川气候模拟中海洋溶解有机碳储层的动态:生物生产的重要性
海洋溶解有机碳(DOC)储量在规模上可与大气碳储量相媲美。最近的研究表明,DOC库的大小可能响应海温和全球翻转环流强度的变化。此外,海洋DOC的动员与低温冰期和始新世热活动等古气候事件有关。尽管有这些建议,但人们对海洋DOC库的动力学知之甚少,以前的碳循环建模通常假设该库是静态的。在这项研究中,我们利用一个中等复杂程度的地球系统模型来评估海洋DOC库对各种冰川边界条件的响应。我们的研究结果表明,海洋DOC储层对冰川扰动有响应,可能在10-100 Pg c的量级上收缩或扩大。与最近强调DOC降解在驱动DOC储层流动性中的重要性的研究相反,我们的研究表明DOC产生的重要性。例如,在完全冰川边界条件下的实验中,净初级产量下降19%导致DOC库中减少81 Pg C,如果没有这些,仅通过溶解无机碳的变化,大气CO2浓度就会降低约38 ppm。因此,DOC库变率对于充分考虑模拟的大气CO2浓度变化是必要的。我们基于冰川实验的发现在一组不同的模拟中得到了证实,这些模拟使用淡水通量诱导大西洋经向翻转环流的减弱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Paleoceanography and Paleoclimatology
Paleoceanography and Paleoclimatology Earth and Planetary Sciences-Atmospheric Science
CiteScore
6.20
自引率
11.40%
发文量
107
期刊介绍: Paleoceanography and Paleoclimatology (PALO) publishes papers dealing with records of past environments, biota and climate. Understanding of the Earth system as it was in the past requires the employment of a wide range of approaches including marine and lacustrine sedimentology and speleothems; ice sheet formation and flow; stable isotope, trace element, and organic geochemistry; paleontology and molecular paleontology; evolutionary processes; mineralization in organisms; understanding tree-ring formation; seismic stratigraphy; physical, chemical, and biological oceanography; geochemical, climate and earth system modeling, and many others. The scope of this journal is regional to global, rather than local, and includes studies of any geologic age (Precambrian to Quaternary, including modern analogs). Within this framework, papers on the following topics are to be included: chronology, stratigraphy (where relevant to correlation of paleoceanographic events), paleoreconstructions, paleoceanographic modeling, paleocirculation (deep, intermediate, and shallow), paleoclimatology (e.g., paleowinds and cryosphere history), global sediment and geochemical cycles, anoxia, sea level changes and effects, relations between biotic evolution and paleoceanography, biotic crises, paleobiology (e.g., ecology of “microfossils” used in paleoceanography), techniques and approaches in paleoceanographic inferences, and modern paleoceanographic analogs, and quantitative and integrative analysis of coupled ocean-atmosphere-biosphere processes. Paleoceanographic and Paleoclimate studies enable us to use the past in order to gain information on possible future climatic and biotic developments: the past is the key to the future, just as much and maybe more than the present is the key to the past.
期刊最新文献
Summer and Autumn Insolation as the Pacemaker of Surface Wind and Precipitation Dynamics Over Tropical Indian Ocean During the Holocene: Insights From Paleoproductivity Records and Paleoclimate Simulations Biomarker Evidence for an MIS M2 Glacial‐Pluvial in the Mojave Desert Before Warming and Drying in the Late Pliocene Detecting Paleoclimate Transitions With Laplacian Eigenmaps of Recurrence Matrices (LERM) Palynofloral Change Through the Paleocene‐Eocene Thermal Maximum in the Bighorn Basin, Wyoming Pacific‐Driven Salinity Variability in the Timor Passage Since 1777
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1