Thermal Wave in Phonon Hydrodynamic Regime by Phonon Monte Carlo Simulations

IF 2.7 3区 工程技术 Q2 ENGINEERING, MECHANICAL Nanoscale and Microscale Thermophysical Engineering Pub Date : 2020-04-02 DOI:10.1080/15567265.2020.1755399
Ben-Dian Nie, B. Cao
{"title":"Thermal Wave in Phonon Hydrodynamic Regime by Phonon Monte Carlo Simulations","authors":"Ben-Dian Nie, B. Cao","doi":"10.1080/15567265.2020.1755399","DOIUrl":null,"url":null,"abstract":"ABSTRACT Thermal wave, namely wavelike behavior of heat propagation in transient heat conduction, enjoys much attention due to the recent investigations into phonon hydrodynamics in low-dimensional materials. In this paper, an improved phonon Monte Carlo (MC) simulation algorithm is developed based on the Callaway’s dual relaxation time approximation model, which can deal with the coupling of normal and resistance scattering processes. Via the method, more thermal wave evidences are observed from the microscopic view of phonons, including overshooting and diffraction. Furthermore, the ballistic and hydrodynamic thermal waves are deeply studied. Two kinds of dissipation are found to exist in thermal waves, namely spatial dissipation and resistance dissipation. The former keeps the conservation of phonon momentum, but it lengthens the wavelength and decreases the peak temperature. The latter destroys the phonon momentum and keeps the original profile, lowering the peak temperature. Finally, phonon transport phenomena in Ziman hydrodynamic regime and diffusive regime are investigated, by introducing the scattering probability. The propagation tendency of thermal energy is found to decrease with the increasing scattering probability. The investigations into phonon hydrodynamics help to understand the heat transport characteristics and improve thermal management in low-dimensional materials.","PeriodicalId":49784,"journal":{"name":"Nanoscale and Microscale Thermophysical Engineering","volume":"24 1","pages":"122 - 94"},"PeriodicalIF":2.7000,"publicationDate":"2020-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15567265.2020.1755399","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale and Microscale Thermophysical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15567265.2020.1755399","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 15

Abstract

ABSTRACT Thermal wave, namely wavelike behavior of heat propagation in transient heat conduction, enjoys much attention due to the recent investigations into phonon hydrodynamics in low-dimensional materials. In this paper, an improved phonon Monte Carlo (MC) simulation algorithm is developed based on the Callaway’s dual relaxation time approximation model, which can deal with the coupling of normal and resistance scattering processes. Via the method, more thermal wave evidences are observed from the microscopic view of phonons, including overshooting and diffraction. Furthermore, the ballistic and hydrodynamic thermal waves are deeply studied. Two kinds of dissipation are found to exist in thermal waves, namely spatial dissipation and resistance dissipation. The former keeps the conservation of phonon momentum, but it lengthens the wavelength and decreases the peak temperature. The latter destroys the phonon momentum and keeps the original profile, lowering the peak temperature. Finally, phonon transport phenomena in Ziman hydrodynamic regime and diffusive regime are investigated, by introducing the scattering probability. The propagation tendency of thermal energy is found to decrease with the increasing scattering probability. The investigations into phonon hydrodynamics help to understand the heat transport characteristics and improve thermal management in low-dimensional materials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
声子-蒙特卡罗模拟在声子流体动力学中的热波
热波,即瞬态热传导中热传播的波状行为,近年来在低维材料中的声子流体力学研究受到了广泛的关注。本文基于Callaway双弛豫时间近似模型,提出了一种改进的声子蒙特卡罗(MC)模拟算法,该算法可以处理正常散射和电阻散射过程的耦合。通过该方法,从声子的微观角度观察到更多的热波证据,包括超调和衍射。此外,还对弹道热波和水动力热波进行了深入的研究。在热波中存在两种耗散,即空间耗散和阻力耗散。前者保持了声子动量守恒,但延长了波长,降低了峰值温度。后者破坏声子动量,保持原有轮廓,降低峰值温度。最后,通过引入散射概率,研究了子在子满流体动力和扩散状态下的输运现象。发现随着散射概率的增大,热能的传播趋势减小。声子流体力学的研究有助于理解低维材料的热输运特性和改善热管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanoscale and Microscale Thermophysical Engineering
Nanoscale and Microscale Thermophysical Engineering 工程技术-材料科学:表征与测试
CiteScore
5.90
自引率
2.40%
发文量
12
审稿时长
3.3 months
期刊介绍: Nanoscale and Microscale Thermophysical Engineering is a journal covering the basic science and engineering of nanoscale and microscale energy and mass transport, conversion, and storage processes. In addition, the journal addresses the uses of these principles for device and system applications in the fields of energy, environment, information, medicine, and transportation. The journal publishes both original research articles and reviews of historical accounts, latest progresses, and future directions in this rapidly advancing field. Papers deal with such topics as: transport and interactions of electrons, phonons, photons, and spins in solids, interfacial energy transport and phase change processes, microscale and nanoscale fluid and mass transport and chemical reaction, molecular-level energy transport, storage, conversion, reaction, and phase transition, near field thermal radiation and plasmonic effects, ultrafast and high spatial resolution measurements, multi length and time scale modeling and computations, processing of nanostructured materials, including composites, micro and nanoscale manufacturing, energy conversion and storage devices and systems, thermal management devices and systems, microfluidic and nanofluidic devices and systems, molecular analysis devices and systems.
期刊最新文献
Mesoscopic Study on Effective Thermal Conductivity of Aerogel Based on a Modified LBM Thermoelectric Phenomena in a Magnetic Heterostructure with AAH Modulation: Charge and Spin Figure of Merits Coupling of Surface Plasmon Polaritons and Hyperbolic Phonon Polaritons on the Near-Field Radiative Heat Transfer Between Multilayer Graphene/hBN Structures Thermodynamic control the self-assembled formation of vertically aligned nanocomposite thin film Elasto-Thermodiffusive Microtemperature Model Induced by a Mechanical Ramp-Type of Nanoscale Photoexcited Semiconductor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1