The Statistics of Computer Clocks and the Design of Synchronization Algorithms

IF 1.3 4区 工程技术 Q3 INSTRUMENTS & INSTRUMENTATION Journal of Research of the National Institute of Standards and Technology Pub Date : 2020-02-25 DOI:10.6028/jres.125.008
J. Levine
{"title":"The Statistics of Computer Clocks and the Design of Synchronization Algorithms","authors":"J. Levine","doi":"10.6028/jres.125.008","DOIUrl":null,"url":null,"abstract":"In this study, I used standard statistical tools (such as the various forms of the two-sample Allan variance) to characterize the clocks in computers, and I show how the results of this study are used to design algorithms to synchronize the computer clocks. These synchronization algorithms can be used to synchronize the time of a computer to a local reference clock or to a remote server. The algorithms by themselves are not intended to be a simple replacement for software that implements the Network Time Protocol (NTP) or any other similar application. Instead, they describe the statistical principles that should be used to design an algorithm to synchronize any computer clock by using data from any external reference received in any format. These algorithms have been used to synchronize the clocks of the computers that support the Internet Time Service operated by the National Institute of Standards and Technology (NIST), and I illustrate the performance of the algorithm with real-time data from these servers. In addition to presenting the design principles of the algorithm, I illustrate the principles with two specific examples: synchronizing a computer clock to a local reference signal, and the design of a synchronization process that is based on time-difference data received from a remote server over the public Internet. The message exchange between the local system and the remote server in this configuration is realized in NTP format, but that is not a fundamental requirement.","PeriodicalId":54766,"journal":{"name":"Journal of Research of the National Institute of Standards and Technology","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2020-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research of the National Institute of Standards and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.6028/jres.125.008","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, I used standard statistical tools (such as the various forms of the two-sample Allan variance) to characterize the clocks in computers, and I show how the results of this study are used to design algorithms to synchronize the computer clocks. These synchronization algorithms can be used to synchronize the time of a computer to a local reference clock or to a remote server. The algorithms by themselves are not intended to be a simple replacement for software that implements the Network Time Protocol (NTP) or any other similar application. Instead, they describe the statistical principles that should be used to design an algorithm to synchronize any computer clock by using data from any external reference received in any format. These algorithms have been used to synchronize the clocks of the computers that support the Internet Time Service operated by the National Institute of Standards and Technology (NIST), and I illustrate the performance of the algorithm with real-time data from these servers. In addition to presenting the design principles of the algorithm, I illustrate the principles with two specific examples: synchronizing a computer clock to a local reference signal, and the design of a synchronization process that is based on time-difference data received from a remote server over the public Internet. The message exchange between the local system and the remote server in this configuration is realized in NTP format, but that is not a fundamental requirement.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
计算机时钟统计与同步算法设计
在本研究中,我使用标准的统计工具(如各种形式的双样本Allan方差)来表征计算机中的时钟,我展示了如何使用本研究的结果来设计算法来同步计算机时钟。这些同步算法可用于将计算机的时间同步到本地参考时钟或远程服务器。这些算法本身并不打算简单地替代实现网络时间协议(NTP)或任何其他类似应用程序的软件。相反,它们描述了应该用于设计算法的统计原理,通过使用以任何格式接收的来自任何外部参考的数据来同步任何计算机时钟。这些算法已被用于同步由美国国家标准与技术研究所(NIST)运行的支持互联网时间服务的计算机的时钟,我用来自这些服务器的实时数据说明了算法的性能。除了介绍该算法的设计原则之外,我还用两个具体的示例说明了这些原则:将计算机时钟同步到本地参考信号,以及基于通过公共Internet从远程服务器接收的时差数据的同步过程的设计。在此配置中,本地系统和远程服务器之间的消息交换以NTP格式实现,但这不是基本要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
33.30%
发文量
10
审稿时长
>12 weeks
期刊介绍: The Journal of Research of the National Institute of Standards and Technology is the flagship publication of the National Institute of Standards and Technology. It has been published under various titles and forms since 1904, with its roots as Scientific Papers issued as the Bulletin of the Bureau of Standards. In 1928, the Scientific Papers were combined with Technologic Papers, which reported results of investigations of material and methods of testing. This new publication was titled the Bureau of Standards Journal of Research. The Journal of Research of NIST reports NIST research and development in metrology and related fields of physical science, engineering, applied mathematics, statistics, biotechnology, information technology.
期刊最新文献
Models for an Ultraviolet-C Research and Development Consortium. Disinfection of Respirators with Ultraviolet Radiation. Capacity Models and Transmission Risk Mitigation: An Engineering Framework to Predict the Effect of Air Disinfection by Germicidal Ultraviolet Radiation. Portable Ultraviolet-C Chambers for Inactivation of SARS-CoV-2. Calorimetry in Computed Tomography Beams.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1