Predicting COVID-19 cases, deaths and recoveries using machine learning methods

M. Lounis, F. Khan
{"title":"Predicting COVID-19 cases, deaths and recoveries using machine learning methods","authors":"M. Lounis, F. Khan","doi":"10.30538/psrp-easl2021.0079","DOIUrl":null,"url":null,"abstract":"In the presented work we applied three machine learning techniques to forecast and predict COVID-19 cases, deaths ad recoveries numbers in Algeria for the next six months using data from February 25th, 2020 to April 26th , 2021. These models are represented by the Gaussian process regression (GPR), the support vector machine (SVM) and the decision tree (DT). The plotting results and parameters evaluation pointed out that the Gaussian Process Regression (GPR) has the best performance. Prediction with this model showed that the number of cases, deaths and recoveries will increase in the next months Algeria recording a peak in the month of August and the curve will tend to decrease later.","PeriodicalId":11518,"journal":{"name":"Engineering and Applied Science Letters","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering and Applied Science Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30538/psrp-easl2021.0079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In the presented work we applied three machine learning techniques to forecast and predict COVID-19 cases, deaths ad recoveries numbers in Algeria for the next six months using data from February 25th, 2020 to April 26th , 2021. These models are represented by the Gaussian process regression (GPR), the support vector machine (SVM) and the decision tree (DT). The plotting results and parameters evaluation pointed out that the Gaussian Process Regression (GPR) has the best performance. Prediction with this model showed that the number of cases, deaths and recoveries will increase in the next months Algeria recording a peak in the month of August and the curve will tend to decrease later.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用机器学习方法预测新冠肺炎病例、死亡和康复
在所介绍的工作中,我们使用2020年2月25日至2021年4月26日的数据,应用三种机器学习技术预测和预测阿尔及利亚未来六个月的新冠肺炎病例、死亡和康复人数。这些模型由高斯过程回归(GPR)、支持向量机(SVM)和决策树(DT)表示。绘图结果和参数评估表明,高斯过程回归(GPR)具有最好的性能。该模型的预测显示,未来几个月,阿尔及利亚的病例数、死亡人数和康复人数将增加,8月份将达到峰值,此后曲线将趋于下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
Digital high-speed data modulation techniques Predicting COVID-19 cases, deaths and recoveries using machine learning methods Dependence of reflectance on angular deposition and film thickness of ZnS/Ag nanolayers Gallery of integrating factors for non-linear first-order differential equations The relationship between the energy efficiency of buildings and occupants: A review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1