{"title":"Reporting Two Novel Mutations in Two Iranian Families with Cystic Fibrosis, Molecular and Bioinformatic Analysis","authors":"Amin Hosseini Nami, M. Kabiri, S. Zeinali","doi":"10.52547/ibj.3713","DOIUrl":null,"url":null,"abstract":"Background: Cystic fibrosis is the most common heredity disease among the Caucasian population. More than 350 known pathogenic variations in the CFTR gene (NM_000492.4) cause CF. Herein, we report the outcome of our investigation in two unrelated Iranian families with CF patients. Methods: We conducted phenotypic examination, segregation, linkage analysis, and CFTR gene sequencing to define causative mutations. Results: We found two novel mutations in the present study. The first one was a deletion causing frameshift, c.299delT p.(Leu100Profs*7), and the second one was a missense mutation, c.1857G>T, at nucleotide binding domain 1 of the CFTR protein. Haplotype segregation data supported our new mutation findings. Conclusion: Findings of this study expand the spectrum of CFTR pathogenic variations and can improve prenatal diagnosis and genetic counseling for CF.","PeriodicalId":14500,"journal":{"name":"Iranian Biomedical Journal","volume":"26 1","pages":"398 - 405"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Biomedical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52547/ibj.3713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 1
Abstract
Background: Cystic fibrosis is the most common heredity disease among the Caucasian population. More than 350 known pathogenic variations in the CFTR gene (NM_000492.4) cause CF. Herein, we report the outcome of our investigation in two unrelated Iranian families with CF patients. Methods: We conducted phenotypic examination, segregation, linkage analysis, and CFTR gene sequencing to define causative mutations. Results: We found two novel mutations in the present study. The first one was a deletion causing frameshift, c.299delT p.(Leu100Profs*7), and the second one was a missense mutation, c.1857G>T, at nucleotide binding domain 1 of the CFTR protein. Haplotype segregation data supported our new mutation findings. Conclusion: Findings of this study expand the spectrum of CFTR pathogenic variations and can improve prenatal diagnosis and genetic counseling for CF.