Coverage Improvements for Sub-Terahertz Systems Under Shadowing Conditions

Werner Mohr
{"title":"Coverage Improvements for Sub-Terahertz Systems Under Shadowing Conditions","authors":"Werner Mohr","doi":"10.26636/jtit.2023.3.1301","DOIUrl":null,"url":null,"abstract":"Radio propagation in the millimeter wave and sub-terahertz domain is heavily affected by shadowing conditions. The communication link is blocked without any additional technical means being used. Coverage improvements can be provided by using reflectors, RIS arrays, and repeaters to direct radio waves around corners or obstacles. These concepts show different performance and complexity levels affecting their network deployment. This paper investigates the achievable radio range or the received power to compare specific deployment concepts under realistic propagation conditions. Overall, the repeater solution provides either the largest radio range or the lowest necessary total transmit power compared to reflectors or RIS arrays and, thereby, is the most sustainable approach. A RIS array requires an additional centralized signal processing capacity for calculating optimized RIS settings and results in the highest level of network deployment complexity.","PeriodicalId":38425,"journal":{"name":"Journal of Telecommunications and Information Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Telecommunications and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26636/jtit.2023.3.1301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Radio propagation in the millimeter wave and sub-terahertz domain is heavily affected by shadowing conditions. The communication link is blocked without any additional technical means being used. Coverage improvements can be provided by using reflectors, RIS arrays, and repeaters to direct radio waves around corners or obstacles. These concepts show different performance and complexity levels affecting their network deployment. This paper investigates the achievable radio range or the received power to compare specific deployment concepts under realistic propagation conditions. Overall, the repeater solution provides either the largest radio range or the lowest necessary total transmit power compared to reflectors or RIS arrays and, thereby, is the most sustainable approach. A RIS array requires an additional centralized signal processing capacity for calculating optimized RIS settings and results in the highest level of network deployment complexity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
遮蔽条件下亚太赫兹系统的覆盖改进
毫米波和亚太赫兹域中的无线电传播受到阴影条件的严重影响。在没有使用任何附加技术手段的情况下,通信链路被阻断。可以通过使用反射器、RIS阵列和中继器在角落或障碍物周围引导无线电波来提高覆盖率。这些概念显示了影响其网络部署的不同性能和复杂性级别。本文研究了可实现的无线电距离或接收功率,以比较在现实传播条件下的具体部署概念。总的来说,与反射器或RIS阵列相比,中继器解决方案提供了最大的无线电范围或最低的必要总发射功率,因此是最可持续的方法。RIS阵列需要额外的集中信号处理能力来计算优化的RIS设置,并导致最高级别的网络部署复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Telecommunications and Information Technology
Journal of Telecommunications and Information Technology Engineering-Electrical and Electronic Engineering
CiteScore
1.20
自引率
0.00%
发文量
34
期刊最新文献
High-isolation Quad-port MIMO Antenna for 5G Applications A Generalized Learning Approach to Deep Neural Networks Increasing Parallelism in Forward-backward Distributed Algorithm for Finding Strongly Connected Components of Directed Graphs Analyzing Performance of THz Band Graphene-Based MIMO Antenna for 6G Applications Multiprobe Planar Near-field Range Antenna Measurement System with Improved Performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1