Low Overpotential Electroreduction of CO2 on porous SnO2/ZnO Catalysts

IF 2.7 4区 工程技术 Q3 ELECTROCHEMISTRY Journal of Electrochemical Energy Conversion and Storage Pub Date : 2023-05-25 DOI:10.1115/1.4062618
Qi Sun, Jianqi Liu, Bo Zhou, Yanping Liu, Yang Tang, P. Wan, Qing Hu, Xiao Jin Yang
{"title":"Low Overpotential Electroreduction of CO2 on porous SnO2/ZnO Catalysts","authors":"Qi Sun, Jianqi Liu, Bo Zhou, Yanping Liu, Yang Tang, P. Wan, Qing Hu, Xiao Jin Yang","doi":"10.1115/1.4062618","DOIUrl":null,"url":null,"abstract":"\n SnO2-based materials are promising catalysts for CO2 electrochemical reduction due to its attractive selectivity for C1 products (formate and carbon monoxide) but they tend to suffer high overpotential and poor stability. Here, a porous SnO2/ZnO catalyst is synthesized via hydroxides coprecipitation, hydrothermal treatment and carbon black template calcination. SnO2 nanocrystals are produced by calcination of tin hydroxides while the growth of ZnO nanocrystals is associated with carbon black template. The porous SnO2/ZnO catalyst presents a stable Faradaic efficiency of >90% for CO2 reduction at an applied voltage of -0.7 V versus reversible hydrogen electrode (RHE) and a C1 current density of 9.53 mA cm−2 over a testing period of 100 h. The improved performance is originated from abundant heterojunctions and lattice defects of SnO2 and ZnO nanocrystals, large specific surface area and grain boundary. This study provides a facile method to fabricate porous and nanocrystal metal oxides electrocatalysts for electrochemical processes.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrochemical Energy Conversion and Storage","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062618","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

SnO2-based materials are promising catalysts for CO2 electrochemical reduction due to its attractive selectivity for C1 products (formate and carbon monoxide) but they tend to suffer high overpotential and poor stability. Here, a porous SnO2/ZnO catalyst is synthesized via hydroxides coprecipitation, hydrothermal treatment and carbon black template calcination. SnO2 nanocrystals are produced by calcination of tin hydroxides while the growth of ZnO nanocrystals is associated with carbon black template. The porous SnO2/ZnO catalyst presents a stable Faradaic efficiency of >90% for CO2 reduction at an applied voltage of -0.7 V versus reversible hydrogen electrode (RHE) and a C1 current density of 9.53 mA cm−2 over a testing period of 100 h. The improved performance is originated from abundant heterojunctions and lattice defects of SnO2 and ZnO nanocrystals, large specific surface area and grain boundary. This study provides a facile method to fabricate porous and nanocrystal metal oxides electrocatalysts for electrochemical processes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多孔SnO2/ZnO催化剂上CO2的低过电位电还原
sno2基材料对C1产物(甲酸盐和一氧化碳)具有良好的选择性,是CO2电化学还原的重要催化剂,但其过电位高,稳定性差。本文通过氢氧化物共沉淀法、水热法和炭黑模板煅烧法制备了多孔SnO2/ZnO催化剂。氧化锡纳米晶是通过氢氧锡煅烧制备的,而氧化锌纳米晶的生长则与炭黑模板有关。多孔SnO2/ZnO催化剂在施加电压为-0.7 V时,相对于可逆氢电极(RHE),在100 h的测试周期内,C1电流密度为9.53 mA cm - 2, Faradaic效率稳定在> ~ 90%。性能的提高源于SnO2和ZnO纳米晶体丰富的异质结和晶格缺陷,大的比表面积和晶界。本研究为制备多孔和纳米晶金属氧化物电催化剂提供了一种简便的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.90
自引率
4.00%
发文量
69
期刊介绍: The Journal of Electrochemical Energy Conversion and Storage focuses on processes, components, devices and systems that store and convert electrical and chemical energy. This journal publishes peer-reviewed archival scholarly articles, research papers, technical briefs, review articles, perspective articles, and special volumes. Specific areas of interest include electrochemical engineering, electrocatalysis, novel materials, analysis and design of components, devices, and systems, balance of plant, novel numerical and analytical simulations, advanced materials characterization, innovative material synthesis and manufacturing methods, thermal management, reliability, durability, and damage tolerance.
期刊最新文献
Black-Fe2O3 Polyhedron-Assembled 3D Film Electrode with Enhanced Conductivity and Energy Density for Aqueous Solid-State Energy Storage Critical Review of Hydrogen Production via Seawater Electrolysis and Desalination: Evaluating Current Practices Internal temperature estimation of lithium-ion battery based on improved electro-thermal coupling model and ANFIS Supercapacitor voltage doubling equalization method based on adaptive grouping A High Ceramic Loading LATP-PVDF-Al2O3 Composite Film for Lithium-ion Batteries with Favorable Porous Microstructure and Enhanced Thermal Stability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1