The Effect of Curcumin Nano-Suspension on Myocardial Fibrosis in Diabetic Rats

Bingshuang Xue, Yi Xue, Jiaojiao Zhou, Qichao Yang
{"title":"The Effect of Curcumin Nano-Suspension on Myocardial Fibrosis in Diabetic Rats","authors":"Bingshuang Xue, Yi Xue, Jiaojiao Zhou, Qichao Yang","doi":"10.1166/NNL.2020.3225","DOIUrl":null,"url":null,"abstract":"The occurrence of complications of diabetic patients not only increases the difficulty and burden of treatment but also significantly affects the health and safety of patients. Traditional therapeutic drugs are prone to drug resistance, which affects the therapeutic effect. In recent\n years, the application of plant-derived natural compounds in the treatment of diseases has become a hot spot in the research of diabetes drugs. Curcumin has anti-tumor, anti-inflammation, anti-oxidation and antimicrobial effects, but the mechanism of its effect on cardiomyocytes in diabetic\n patients is not yet clear. In this study, curcumin was prepared into nano-preparations and its mechanism of action in the process of myocardial fibrosis in diabetic rats was further explored. We found that injection of curcumin nano-suspension can increase the LVIDd and LVFS of rats, while\n reducing the serum CKMB, LDH, AST and cTnI levels. Further exploration found that curcumin can reduce serum TNF- α and IL-1 β levels in diabetic rats, while increasing the SOD and GSH-Px activities of myocardial tissue, and reducing MDA content. These suggests that curcumin can\n reduce inflammation and oxidative stress in diabetic rats. Therefore, this study believes that curcumin nano-suspension can effectively inhibit diabetic cardiomyocyte fibrosis, oxidative stress, and inflammation and protect the rat myocardium.","PeriodicalId":18871,"journal":{"name":"Nanoscience and Nanotechnology Letters","volume":"12 1","pages":"1215-1220"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscience and Nanotechnology Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/NNL.2020.3225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The occurrence of complications of diabetic patients not only increases the difficulty and burden of treatment but also significantly affects the health and safety of patients. Traditional therapeutic drugs are prone to drug resistance, which affects the therapeutic effect. In recent years, the application of plant-derived natural compounds in the treatment of diseases has become a hot spot in the research of diabetes drugs. Curcumin has anti-tumor, anti-inflammation, anti-oxidation and antimicrobial effects, but the mechanism of its effect on cardiomyocytes in diabetic patients is not yet clear. In this study, curcumin was prepared into nano-preparations and its mechanism of action in the process of myocardial fibrosis in diabetic rats was further explored. We found that injection of curcumin nano-suspension can increase the LVIDd and LVFS of rats, while reducing the serum CKMB, LDH, AST and cTnI levels. Further exploration found that curcumin can reduce serum TNF- α and IL-1 β levels in diabetic rats, while increasing the SOD and GSH-Px activities of myocardial tissue, and reducing MDA content. These suggests that curcumin can reduce inflammation and oxidative stress in diabetic rats. Therefore, this study believes that curcumin nano-suspension can effectively inhibit diabetic cardiomyocyte fibrosis, oxidative stress, and inflammation and protect the rat myocardium.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
姜黄素纳米混悬液对糖尿病大鼠心肌纤维化的影响
糖尿病患者并发症的发生不仅增加了治疗的难度和负担,而且严重影响患者的健康和安全。传统的治疗药物容易产生耐药性,影响治疗效果。近年来,植物源性天然化合物在疾病治疗中的应用已成为糖尿病药物研究的热点。姜黄素具有抗肿瘤、抗炎症、抗氧化、抗菌等作用,但其对糖尿病患者心肌细胞的作用机制尚不清楚。本研究将姜黄素制备成纳米制剂,并进一步探讨其在糖尿病大鼠心肌纤维化过程中的作用机制。我们发现注射姜黄素纳米混悬液可以提高大鼠LVIDd和LVFS,同时降低血清CKMB、LDH、AST和cTnI水平。进一步研究发现,姜黄素可降低糖尿病大鼠血清TNF- α、IL-1 β水平,提高心肌组织SOD、GSH-Px活性,降低MDA含量。这表明姜黄素可以减少糖尿病大鼠的炎症和氧化应激。因此,本研究认为姜黄素纳米混悬液能有效抑制糖尿病心肌细胞纤维化、氧化应激和炎症,保护大鼠心肌。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanoscience and Nanotechnology Letters
Nanoscience and Nanotechnology Letters Physical, Chemical & Earth Sciences-MATERIALS SCIENCE, MULTIDISCIPLINARY
自引率
0.00%
发文量
0
审稿时长
2.6 months
期刊最新文献
Identification of Immune-Related Prognostic Biomarkers in Pancreatic Cancer Nanocomposite Detection of Elemental Impurities and Process Correlation Analysis of Ceftriaxone Sodium for Injection Astragalus Polysaccharide Nano-Liposomes Modulate the Inflammatory Response and Oxidative Stress in Stroke-Associated Pneumonia by Increasing OIP5-AS1 to Regulate the miR-128-3p/SIRT1 Pathway miR-199a-3p Inhibitor Delivered Through Nano-Drug Delivery Systems Suppresses Tumor Cell Survival and Metastasis Construction of Functional Renal Targeting Nano Drug Liposome and Its Effect on Lupus Nephritis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1