Exosomes derived from magnesium ion—stimulated macrophages inhibit angiogenesis

IF 3.9 3区 医学 Q2 ENGINEERING, BIOMEDICAL Biomedical materials Pub Date : 2022-04-27 DOI:10.1088/1748-605X/ac6b03
R. Hang, Xue Tian, Guangping Qu, Yuyu Zhao, Runhua Yao, Yi Zhang, Wenfa Wei, Xiaohong Yao, P. K. Chu
{"title":"Exosomes derived from magnesium ion—stimulated macrophages inhibit angiogenesis","authors":"R. Hang, Xue Tian, Guangping Qu, Yuyu Zhao, Runhua Yao, Yi Zhang, Wenfa Wei, Xiaohong Yao, P. K. Chu","doi":"10.1088/1748-605X/ac6b03","DOIUrl":null,"url":null,"abstract":"Angiogenesis, an essential prerequisite to osteogenesis in bone repair and regeneration, can be mediated by immunoregulation of macrophages. Magnesium and its alloys are promising biodegradable bone implant materials and can affect immunoregulation of macrophages by the degradation products (magnesium ions). Nevertheless, the mechanism of macrophage-derived exosomes stimulated by Mg ions in immunoregulation is still not well understood. Herein, 10–50 mM magnesium ions are shown to inhibit the macrophage viability and proliferation in a dose-dependent manner, but a high concentration results in macrophage apoptosis. The exosomes secreted by macrophages from magnesium ion stimulation inhibit angiogenesis of endothelial cells, as manifested by the suppressed cell viability, proliferation, migration, and tube formation, which arise at least partially from exosome-mediated downregulation of endothelial nitric oxide and the vascular endothelial growth factor. The findings reported in this paper suggest that the bio-functionality of biodegradable magnesium alloys must be considered from the perspective of immunoregulation of macrophage-derived exosomes. Our results also suggest potential cancer therapy by inhibiting tumor-associated angiogenesis.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2022-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1748-605X/ac6b03","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Angiogenesis, an essential prerequisite to osteogenesis in bone repair and regeneration, can be mediated by immunoregulation of macrophages. Magnesium and its alloys are promising biodegradable bone implant materials and can affect immunoregulation of macrophages by the degradation products (magnesium ions). Nevertheless, the mechanism of macrophage-derived exosomes stimulated by Mg ions in immunoregulation is still not well understood. Herein, 10–50 mM magnesium ions are shown to inhibit the macrophage viability and proliferation in a dose-dependent manner, but a high concentration results in macrophage apoptosis. The exosomes secreted by macrophages from magnesium ion stimulation inhibit angiogenesis of endothelial cells, as manifested by the suppressed cell viability, proliferation, migration, and tube formation, which arise at least partially from exosome-mediated downregulation of endothelial nitric oxide and the vascular endothelial growth factor. The findings reported in this paper suggest that the bio-functionality of biodegradable magnesium alloys must be considered from the perspective of immunoregulation of macrophage-derived exosomes. Our results also suggest potential cancer therapy by inhibiting tumor-associated angiogenesis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
镁离子刺激巨噬细胞衍生的外泌体抑制血管生成
血管生成是骨修复和再生成骨的必要前提,可通过巨噬细胞的免疫调节介导。镁及其合金是一种很有前途的生物可降解骨植入材料,其降解产物(镁离子)可以影响巨噬细胞的免疫调节。然而,巨噬细胞源性外泌体在镁离子刺激下的免疫调节机制尚不清楚。在本研究中,10-50 mM镁离子以剂量依赖的方式抑制巨噬细胞的活力和增殖,但高浓度会导致巨噬细胞凋亡。镁离子刺激巨噬细胞分泌的外泌体抑制内皮细胞的血管生成,表现为细胞活力、增殖、迁移和管形成受到抑制,至少部分原因是外泌体介导的内皮一氧化氮和血管内皮生长因子的下调。本文的研究结果表明,必须从巨噬细胞来源的外泌体的免疫调节角度来考虑可生物降解镁合金的生物功能。我们的研究结果还提示通过抑制肿瘤相关血管生成来治疗癌症。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomedical materials
Biomedical materials 工程技术-材料科学:生物材料
CiteScore
6.70
自引率
7.50%
发文量
294
审稿时长
3 months
期刊介绍: The goal of the journal is to publish original research findings and critical reviews that contribute to our knowledge about the composition, properties, and performance of materials for all applications relevant to human healthcare. Typical areas of interest include (but are not limited to): -Synthesis/characterization of biomedical materials- Nature-inspired synthesis/biomineralization of biomedical materials- In vitro/in vivo performance of biomedical materials- Biofabrication technologies/applications: 3D bioprinting, bioink development, bioassembly & biopatterning- Microfluidic systems (including disease models): fabrication, testing & translational applications- Tissue engineering/regenerative medicine- Interaction of molecules/cells with materials- Effects of biomaterials on stem cell behaviour- Growth factors/genes/cells incorporated into biomedical materials- Biophysical cues/biocompatibility pathways in biomedical materials performance- Clinical applications of biomedical materials for cell therapies in disease (cancer etc)- Nanomedicine, nanotoxicology and nanopathology- Pharmacokinetic considerations in drug delivery systems- Risks of contrast media in imaging systems- Biosafety aspects of gene delivery agents- Preclinical and clinical performance of implantable biomedical materials- Translational and regulatory matters
期刊最新文献
A low-swelling alginate hydrogel with antibacterial hemostatic and radical scavenging properties for open wound healing. Evaluation of properties for Carbothane™ 3575A-based electrospun vascular grafts in vitro and in vivo. Migration and retention of human osteosarcoma cells in bioceramic graft with open channel architecture designed for bone tissue engineering. Enhancement of induction heating capability of bioactive SiO2–CaO–Na2O–P2O5 glass-ceramics by selective substitution with magnetite nanoparticles A xenogeneic extracellular matrix-based 3D printing scaffold modified by ceria nanoparticles for craniomaxillofacial hard tissue regeneration via osteo-immunomodulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1