Life cycle assessment of microalgal cultivation medium: biomass, glycerol, and beta-carotene production by Dunaliella salina and Dunaliella tertiolecta.

IF 4.9 3区 环境科学与生态学 Q2 ENGINEERING, ENVIRONMENTAL International Journal of Life Cycle Assessment Pub Date : 2024-01-01 Epub Date: 2023-07-24 DOI:10.1007/s11367-023-02209-2
Gleison de Souza Celente, Rosana de Cassia de Souza Schneider, Jennifer Julich, Tiele Medianeira Rizzetti, Eduardo Alcayaga Lobo, Yixing Sui
{"title":"Life cycle assessment of microalgal cultivation medium: biomass, glycerol, and beta-carotene production by <i>Dunaliella salina</i> and <i>Dunaliella tertiolecta</i>.","authors":"Gleison de Souza Celente, Rosana de Cassia de Souza Schneider, Jennifer Julich, Tiele Medianeira Rizzetti, Eduardo Alcayaga Lobo, Yixing Sui","doi":"10.1007/s11367-023-02209-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong><i>Dunaliella</i> is a halophilic genus of microalgae with high potential in the global food market. The microalgal cultivation process contributes to not only economic impact but also environmental impact, especially regarding the artificial medium composition. In this context, a life cycle assessment was carried out to analyze the impacts associated with the components of the modified Johnson medium (MJM) and to predict the best scenarios to cultivate <i>Dunaliella tertiolecta</i> and <i>Dunaliella salina</i> for biomass, glycerol, and beta-carotene production.</p><p><strong>Method: </strong>Two chains were analyzed separately: (1) <i>Dunaliella salina</i> (strain DF 15) cultivated in 8 scenarios combining different nitrogen (0.1 and 1.0 g L<sup>-1</sup> KNO<sub>3</sub>) and magnesium (1.1-2.3 g L<sup>-1</sup> MgCl<sub>2</sub>.6H<sub>2</sub>O) concentrations to produce biomass, glycerol, and beta-carotene and (2) <i>Dunaliella tertiolecta</i> (strain CCAP 19/30) cultivated in 5 scenarios combining different nitrogen (0.1 and 1.0 g L<sup>-1</sup> KNO<sub>3</sub>) and salt (116.9-175.4 g L<sup>-1</sup> sea salt) concentrations to produce biomass and glycerol. In addition, we evaluated the potential of cultivating these species to reduce the carbon footprint of the proposed scenarios.</p><p><strong>Results and discussion: </strong>For <i>D. salina</i>, S<sub>5</sub> (1 g L<sup>-1</sup> KNO<sub>3</sub>, 1.1 g L<sup>-1</sup> MgCl<sub>2</sub>.6H<sub>2</sub>O) had the lowest environmental damage for biomass (74.2 mPt) and glycerol production (0.95 Pt) and S<sub>3</sub> (0.1 g L<sup>-1</sup> KNO<sub>3</sub>, 1.9 g L<sup>-1</sup> MgCl<sub>2</sub>.6H<sub>2</sub>O) for beta-carotene (3.88 Pt). T<sub>4</sub> (1 g L<sup>-1</sup> KNO<sub>3</sub>, 116.9 g L<sup>-1</sup> sea salt) was the best for <i>D. tertiolecta</i> for biomass (74 mPt) and glycerol (0.49 Pt). \"Respiratory inorganics,\" \"Non-renewable energy,\" and \"Global warming\" were the most impacted categories. \"Human health,\" \"Climate change,\" and \"Resources\" had the highest share of all damage categories. All the scenarios presented negative carbon emission after proposing using brine as alternative salt source: S<sub>5</sub> was the best scenario (- 157.5 kg CO<sub>2</sub>-eq) for <i>D. salina</i> and T<sub>4</sub> for <i>D. tertiolecta</i> (- 213.6 kg CO<sub>2</sub>-eq).</p><p><strong>Conclusion: </strong>The LCA proved its importance in accurately predicting the optimal scenarios for MJM composition in the analyzed bioproducts, as confirmed by the Monte Carlo simulation. Although the absolute values of impacts and productivity cannot be directly compared to large-scale cultivation, the validity of the LCA results at this scale remains intact. Productivity gains could outweigh the impacts of \"surplus\" MJM components. Our study showcased the potential of combining <i>D. salina</i> and <i>D. tertiolecta</i> cultivation with CO<sub>2</sub> capture, leading to a more environmentally friendly cultivation system with a reduced carbon footprint.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11367-023-02209-2.</p>","PeriodicalId":54952,"journal":{"name":"International Journal of Life Cycle Assessment","volume":" ","pages":"2269-2282"},"PeriodicalIF":4.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11627462/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Life Cycle Assessment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11367-023-02209-2","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Dunaliella is a halophilic genus of microalgae with high potential in the global food market. The microalgal cultivation process contributes to not only economic impact but also environmental impact, especially regarding the artificial medium composition. In this context, a life cycle assessment was carried out to analyze the impacts associated with the components of the modified Johnson medium (MJM) and to predict the best scenarios to cultivate Dunaliella tertiolecta and Dunaliella salina for biomass, glycerol, and beta-carotene production.

Method: Two chains were analyzed separately: (1) Dunaliella salina (strain DF 15) cultivated in 8 scenarios combining different nitrogen (0.1 and 1.0 g L-1 KNO3) and magnesium (1.1-2.3 g L-1 MgCl2.6H2O) concentrations to produce biomass, glycerol, and beta-carotene and (2) Dunaliella tertiolecta (strain CCAP 19/30) cultivated in 5 scenarios combining different nitrogen (0.1 and 1.0 g L-1 KNO3) and salt (116.9-175.4 g L-1 sea salt) concentrations to produce biomass and glycerol. In addition, we evaluated the potential of cultivating these species to reduce the carbon footprint of the proposed scenarios.

Results and discussion: For D. salina, S5 (1 g L-1 KNO3, 1.1 g L-1 MgCl2.6H2O) had the lowest environmental damage for biomass (74.2 mPt) and glycerol production (0.95 Pt) and S3 (0.1 g L-1 KNO3, 1.9 g L-1 MgCl2.6H2O) for beta-carotene (3.88 Pt). T4 (1 g L-1 KNO3, 116.9 g L-1 sea salt) was the best for D. tertiolecta for biomass (74 mPt) and glycerol (0.49 Pt). "Respiratory inorganics," "Non-renewable energy," and "Global warming" were the most impacted categories. "Human health," "Climate change," and "Resources" had the highest share of all damage categories. All the scenarios presented negative carbon emission after proposing using brine as alternative salt source: S5 was the best scenario (- 157.5 kg CO2-eq) for D. salina and T4 for D. tertiolecta (- 213.6 kg CO2-eq).

Conclusion: The LCA proved its importance in accurately predicting the optimal scenarios for MJM composition in the analyzed bioproducts, as confirmed by the Monte Carlo simulation. Although the absolute values of impacts and productivity cannot be directly compared to large-scale cultivation, the validity of the LCA results at this scale remains intact. Productivity gains could outweigh the impacts of "surplus" MJM components. Our study showcased the potential of combining D. salina and D. tertiolecta cultivation with CO2 capture, leading to a more environmentally friendly cultivation system with a reduced carbon footprint.

Supplementary information: The online version contains supplementary material available at 10.1007/s11367-023-02209-2.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微藻培养基的生命周期评估:盐藻和tertiolecta产生的生物量、甘油和β-胡萝卜素
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Life Cycle Assessment
International Journal of Life Cycle Assessment 环境科学-工程:环境
CiteScore
10.60
自引率
10.40%
发文量
100
审稿时长
8-16 weeks
期刊介绍: The International Journal of Life Cycle Assessment (Int J Life Cycle Assess) is the first journal devoted entirely to Life Cycle Assessment and closely related methods. LCA has become a recognized instrument to assess the ecological burdens and impacts throughout the consecutive and interlinked stages of a product system, from raw material acquisition or generation from natural resources, through production and use to final disposal. The Int J Life Cycle Assess is a forum for scientists developing LCA and LCM (Life Cycle Management); LCA and LCM practitioners; managers concerned with environmental aspects of products; governmental environmental agencies responsible for product quality; scientific and industrial societies involved in LCA development, and ecological institutions and bodies.
期刊最新文献
Life cycle assessment of microalgal cultivation medium: biomass, glycerol, and beta-carotene production by Dunaliella salina and Dunaliella tertiolecta. Effect factors for marine invasion impacts on biodiversity. Environmental potential of fungal insulation: a prospective life cycle assessment of mycelium-based composites Life cycle assessment of a two-seater all-electric aircraft Life cycle analysis of semi-intensive and intensive sheep milk production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1