Chaoyang Li, Wenxi Peng, Yaqing Liu, Xingzhu Cui, Zhenghua An, Xinqiao Li, Shaolin Xiong, Dali Zhang, Ke Gong, Min Gao, Dongya Guo, Xiaohua Liang, Xiaojing Liu, Rui Qiao, Xilei Sun, Jinzhou Wang, Xiangyang Wen, Yanbing Xu, Sheng Yang, Fan Zhang, Xiaoyun Zhao, Juncheng Liang, Haoran Liu, Zhijie Yang, Xiaofei Lan
{"title":"On-ground calibration of low gain response for Gamma-Ray Detectors onboard the GECAM satellite","authors":"Chaoyang Li, Wenxi Peng, Yaqing Liu, Xingzhu Cui, Zhenghua An, Xinqiao Li, Shaolin Xiong, Dali Zhang, Ke Gong, Min Gao, Dongya Guo, Xiaohua Liang, Xiaojing Liu, Rui Qiao, Xilei Sun, Jinzhou Wang, Xiangyang Wen, Yanbing Xu, Sheng Yang, Fan Zhang, Xiaoyun Zhao, Juncheng Liang, Haoran Liu, Zhijie Yang, Xiaofei Lan","doi":"10.1007/s10686-023-09892-x","DOIUrl":null,"url":null,"abstract":"<div><p>The Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor (GECAM) consists of two small satellites operating in the same Earth orbit with opposite phases. Its scientific goal is to monitor the electromagnetic counterparts associated with Gravitational Wave events (GWE) and other cosmic high energy transient sources. As the main detector, the Gamma-Ray Detector (GRD) adopts LaBr<span>\\(_{3}\\)</span>:Ce scintillator coupled with SiPM array. Each GRD has two output channels, i.e. high gain channel (8 <span>\\(\\sim \\)</span> 250 keV) and low gain channel (50 <span>\\(\\sim \\)</span> 6000 keV). In this paper, we present the low gain calibration results of GRDs with radioactive sources on ground, including the E-C relation, energy resolution, absolute detection efficiency and spatial response. Meanwhile, the consistency between the measurements and Geant4 simulation demonstrates the accuracy of the simulation code.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"56 1","pages":"49 - 60"},"PeriodicalIF":2.7000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10686-023-09892-x","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 1
Abstract
The Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor (GECAM) consists of two small satellites operating in the same Earth orbit with opposite phases. Its scientific goal is to monitor the electromagnetic counterparts associated with Gravitational Wave events (GWE) and other cosmic high energy transient sources. As the main detector, the Gamma-Ray Detector (GRD) adopts LaBr\(_{3}\):Ce scintillator coupled with SiPM array. Each GRD has two output channels, i.e. high gain channel (8 \(\sim \) 250 keV) and low gain channel (50 \(\sim \) 6000 keV). In this paper, we present the low gain calibration results of GRDs with radioactive sources on ground, including the E-C relation, energy resolution, absolute detection efficiency and spatial response. Meanwhile, the consistency between the measurements and Geant4 simulation demonstrates the accuracy of the simulation code.
期刊介绍:
Many new instruments for observing astronomical objects at a variety of wavelengths have been and are continually being developed. Furthermore, a vast amount of effort is being put into the development of new techniques for data analysis in order to cope with great streams of data collected by these instruments.
Experimental Astronomy acts as a medium for the publication of papers of contemporary scientific interest on astrophysical instrumentation and methods necessary for the conduct of astronomy at all wavelength fields.
Experimental Astronomy publishes full-length articles, research letters and reviews on developments in detection techniques, instruments, and data analysis and image processing techniques. Occasional special issues are published, giving an in-depth presentation of the instrumentation and/or analysis connected with specific projects, such as satellite experiments or ground-based telescopes, or of specialized techniques.