{"title":"Integrating reduced graphene oxides and PPy nanoparticles for enhanced electricity from water evaporation","authors":"Bingkun Tian, X. Jiang, Weicun Chu, Chunxiao Zheng, Wanlin Guo, Zhuhua Zhang","doi":"10.1080/19475411.2023.2205176","DOIUrl":null,"url":null,"abstract":"ABSTRACT Developing high-performance nanostructured materials is key to deliver the potential of hydrovoltaic technology into practical applications. As single-component materials have approached its limit in generating hydrovoltaic electricity, the development of multi-component hydrovoltaic materials has been necessary in continuously boosting the electricity output. Here, we report a hydrovoltaic material by integrating reduced graphene oxides and polypyrrole nanoparticles (rGO/PPy), where the rGO contributes improved conductivity and large specific surface area while PPy nanoparticles enable enhanced interaction with water. The device fabricated with this material generates a short-circuit current of 6 μA as well as a maximum power density of over 1 μW/cm3 from natural evaporation of water. And the substantial ion–PPy interaction enables robust voltage generation from evaporation of various salt solutions. Moreover, an outstanding scaling ability is demonstrated by connecting 10 devices in series that generate a sustainable voltage of up to ~2.5 V, sufficing to power many commercial devices, e.g. LED bulb and LCD screen GRAPHICAL ABSTRACT","PeriodicalId":48516,"journal":{"name":"International Journal of Smart and Nano Materials","volume":"14 1","pages":"230 - 242"},"PeriodicalIF":4.5000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Smart and Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/19475411.2023.2205176","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
ABSTRACT Developing high-performance nanostructured materials is key to deliver the potential of hydrovoltaic technology into practical applications. As single-component materials have approached its limit in generating hydrovoltaic electricity, the development of multi-component hydrovoltaic materials has been necessary in continuously boosting the electricity output. Here, we report a hydrovoltaic material by integrating reduced graphene oxides and polypyrrole nanoparticles (rGO/PPy), where the rGO contributes improved conductivity and large specific surface area while PPy nanoparticles enable enhanced interaction with water. The device fabricated with this material generates a short-circuit current of 6 μA as well as a maximum power density of over 1 μW/cm3 from natural evaporation of water. And the substantial ion–PPy interaction enables robust voltage generation from evaporation of various salt solutions. Moreover, an outstanding scaling ability is demonstrated by connecting 10 devices in series that generate a sustainable voltage of up to ~2.5 V, sufficing to power many commercial devices, e.g. LED bulb and LCD screen GRAPHICAL ABSTRACT
期刊介绍:
The central aim of International Journal of Smart and Nano Materials is to publish original results, critical reviews, technical discussion, and book reviews related to this compelling research field: smart and nano materials, and their applications. The papers published in this journal will provide cutting edge information and instructive research guidance, encouraging more scientists to make their contribution to this dynamic research field.