Yong Huang , Yi Lin , Bowen Li , Fu Zhang , Chenyue Zhan , Xin Xie , Zhuo Yao , Chongzhi Wu , Yuan Ping , Jianliang Shen
{"title":"Combination therapy to overcome ferroptosis resistance by biomimetic self-assembly nano-prodrug","authors":"Yong Huang , Yi Lin , Bowen Li , Fu Zhang , Chenyue Zhan , Xin Xie , Zhuo Yao , Chongzhi Wu , Yuan Ping , Jianliang Shen","doi":"10.1016/j.ajps.2023.100844","DOIUrl":null,"url":null,"abstract":"<div><p>Ferroptosis has emerged as a potent form of no-apoptotic cell death that offers a promising alternative to avoid the chemoresistance of apoptotic pathways and serves as a vulnerability of cancer. Herein, we have constructed a biomimetic self-assembly nano-prodrug system that enables the co-delivery of gefitinib (Gefi), ferrocene (Fc) and dihydroartemisinin (DHA) for the combined therapy of both ferroptosis and apoptosis. In the tumor microenvironment, this nano-prodrug is able to disassemble and trigger drug release under high levels of GSH. Interestingly, the released DHA can downregulate GPX4 level for the enhancement of intracellular ferroptosis from Fc, further executing tumor cell death with concomitant chemotherapy by Gefi. More importantly, this nano-prodrug provides highly homologous targeting ability by coating related cell membranes and exhibits outstanding inhibition of tumor growth and metastasis, as well as no noticeable side-effects during treatments. This simple small molecular self-assembled nano-prodrug provides a new reasonably designed modality for ferroptosis-combined chemotherapy.</p></div>","PeriodicalId":8539,"journal":{"name":"Asian Journal of Pharmaceutical Sciences","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Pharmaceutical Sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1818087623000715","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Ferroptosis has emerged as a potent form of no-apoptotic cell death that offers a promising alternative to avoid the chemoresistance of apoptotic pathways and serves as a vulnerability of cancer. Herein, we have constructed a biomimetic self-assembly nano-prodrug system that enables the co-delivery of gefitinib (Gefi), ferrocene (Fc) and dihydroartemisinin (DHA) for the combined therapy of both ferroptosis and apoptosis. In the tumor microenvironment, this nano-prodrug is able to disassemble and trigger drug release under high levels of GSH. Interestingly, the released DHA can downregulate GPX4 level for the enhancement of intracellular ferroptosis from Fc, further executing tumor cell death with concomitant chemotherapy by Gefi. More importantly, this nano-prodrug provides highly homologous targeting ability by coating related cell membranes and exhibits outstanding inhibition of tumor growth and metastasis, as well as no noticeable side-effects during treatments. This simple small molecular self-assembled nano-prodrug provides a new reasonably designed modality for ferroptosis-combined chemotherapy.
期刊介绍:
The Asian Journal of Pharmaceutical Sciences (AJPS) serves as the official journal of the Asian Federation for Pharmaceutical Sciences (AFPS). Recognized by the Science Citation Index Expanded (SCIE), AJPS offers a platform for the reporting of advancements, production methodologies, technologies, initiatives, and the practical application of scientific knowledge in the field of pharmaceutics. The journal covers a wide range of topics including but not limited to controlled drug release systems, drug targeting, physical pharmacy, pharmacodynamics, pharmacokinetics, pharmacogenomics, biopharmaceutics, drug and prodrug design, pharmaceutical analysis, drug stability, quality control, pharmaceutical engineering, and material sciences.