3D printing of layered mesoporous bioactive glass/sodium alginate-sodium alginate scaffolds with controllable dual-drug release behaviors

IF 3.9 3区 医学 Q2 ENGINEERING, BIOMEDICAL Biomedical materials Pub Date : 2019-10-03 DOI:10.1088/1748-605X/ab4166
Shengyang Fu, Xiaoyu Du, Min Zhu, Z. Tian, Daixu Wei, Yufang Zhu
{"title":"3D printing of layered mesoporous bioactive glass/sodium alginate-sodium alginate scaffolds with controllable dual-drug release behaviors","authors":"Shengyang Fu, Xiaoyu Du, Min Zhu, Z. Tian, Daixu Wei, Yufang Zhu","doi":"10.1088/1748-605X/ab4166","DOIUrl":null,"url":null,"abstract":"Scaffolds with controlled drug release are valuable for bone tissue engineering, but constructing the scaffolds with controllable dual-drug release behaviors is still a challenge. In this study, layered mesoporous bioactive glass/sodium alginate-sodium alginate (MBG/SA–SA) scaffolds with controllable dual-drug release behaviors were fabricated by 3D printing. The porosity and compressive strength of three-dimensional (3D) printed MBG/SA–SA scaffolds by cross-linking are about 78% and 4.2 MPa, respectively. As two model drugs, bovine serum albumin (BSA) and ibuprofen (IBU) were separately loaded in SA layer and MBG/SA layer, resulting in a relatively fast release of BSA and a sustained release of IBU. Furthermore, layered MBG/SA–SA scaffolds were able to stimulate human bone mesenchymal stem cells (hBMSCs) adhesion, proliferation and osteogenic differentiation than SA scaffolds. Hence, the 3D printed MBG/SA–SA scaffolds would be prospective for the treatment of bone defects.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2019-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1088/1748-605X/ab4166","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1748-605X/ab4166","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 24

Abstract

Scaffolds with controlled drug release are valuable for bone tissue engineering, but constructing the scaffolds with controllable dual-drug release behaviors is still a challenge. In this study, layered mesoporous bioactive glass/sodium alginate-sodium alginate (MBG/SA–SA) scaffolds with controllable dual-drug release behaviors were fabricated by 3D printing. The porosity and compressive strength of three-dimensional (3D) printed MBG/SA–SA scaffolds by cross-linking are about 78% and 4.2 MPa, respectively. As two model drugs, bovine serum albumin (BSA) and ibuprofen (IBU) were separately loaded in SA layer and MBG/SA layer, resulting in a relatively fast release of BSA and a sustained release of IBU. Furthermore, layered MBG/SA–SA scaffolds were able to stimulate human bone mesenchymal stem cells (hBMSCs) adhesion, proliferation and osteogenic differentiation than SA scaffolds. Hence, the 3D printed MBG/SA–SA scaffolds would be prospective for the treatment of bone defects.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有可控双药释放行为的层状介孔生物活性玻璃/海藻酸钠-海藻酸钠支架的3D打印
药物可控释放支架在骨组织工程中具有重要的应用价值,但构建具有可控双药释放行为的支架仍是一个挑战。本研究采用3D打印技术制备了具有可控双药释放行为的层状介孔生物活性玻璃/海藻酸钠-海藻酸钠(MBG/ SA-SA)支架。交联三维打印MBG/ SA-SA支架的孔隙率和抗压强度分别约为78%和4.2 MPa。牛血清白蛋白(BSA)和布洛芬(IBU)作为两种模型药物分别加载在SA层和MBG/SA层中,导致BSA的释放相对较快,IBU的释放持续。此外,层状MBG/SA - SA支架比SA支架更能刺激人骨间充质干细胞(hBMSCs)的粘附、增殖和成骨分化。因此,3D打印MBG/ SA-SA支架在骨缺损的治疗中具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomedical materials
Biomedical materials 工程技术-材料科学:生物材料
CiteScore
6.70
自引率
7.50%
发文量
294
审稿时长
3 months
期刊介绍: The goal of the journal is to publish original research findings and critical reviews that contribute to our knowledge about the composition, properties, and performance of materials for all applications relevant to human healthcare. Typical areas of interest include (but are not limited to): -Synthesis/characterization of biomedical materials- Nature-inspired synthesis/biomineralization of biomedical materials- In vitro/in vivo performance of biomedical materials- Biofabrication technologies/applications: 3D bioprinting, bioink development, bioassembly & biopatterning- Microfluidic systems (including disease models): fabrication, testing & translational applications- Tissue engineering/regenerative medicine- Interaction of molecules/cells with materials- Effects of biomaterials on stem cell behaviour- Growth factors/genes/cells incorporated into biomedical materials- Biophysical cues/biocompatibility pathways in biomedical materials performance- Clinical applications of biomedical materials for cell therapies in disease (cancer etc)- Nanomedicine, nanotoxicology and nanopathology- Pharmacokinetic considerations in drug delivery systems- Risks of contrast media in imaging systems- Biosafety aspects of gene delivery agents- Preclinical and clinical performance of implantable biomedical materials- Translational and regulatory matters
期刊最新文献
A low-swelling alginate hydrogel with antibacterial hemostatic and radical scavenging properties for open wound healing. Evaluation of properties for Carbothane™ 3575A-based electrospun vascular grafts in vitro and in vivo. Migration and retention of human osteosarcoma cells in bioceramic graft with open channel architecture designed for bone tissue engineering. Enhancement of induction heating capability of bioactive SiO2–CaO–Na2O–P2O5 glass-ceramics by selective substitution with magnetite nanoparticles Antiproliferative efficacy and mechanism of action of garlic phytochemicals-functionalized gold nanoparticles in triple-negative breast cancer cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1