{"title":"Is the Electron Magnetic Moment Unique?","authors":"V. A. Golovko","doi":"10.1007/s10701-023-00723-9","DOIUrl":null,"url":null,"abstract":"<div><p>There exist two methods for finding the magnetic moment of the electron. The first method employed in quantum electrodynamics consists in calculating the energy of the electron placed in a constant magnetic field, the extra energy due to the field being proportional to the magnetic moment. It is also possible to use the second method proceeding from the fact that the asymptotic form of the vector potential at infinity is proportional to the magnetic moment. If the electron were point-like, both the methods would yield identical results. In the present paper is studied the magnetic field created by the electron in hydrogen-like ions, which enables one to find the electron magnetic moment by the second method. The electron magnetic moment in this case proves to be different in different states of the electron in the Coulomb field of the ions and, moreover, is distinct from the magnetic moment calculated by the first method. The results of the paper show that the electron is not small and is deformable under action of external fields.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"53 5","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10701-023-00723-9","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
There exist two methods for finding the magnetic moment of the electron. The first method employed in quantum electrodynamics consists in calculating the energy of the electron placed in a constant magnetic field, the extra energy due to the field being proportional to the magnetic moment. It is also possible to use the second method proceeding from the fact that the asymptotic form of the vector potential at infinity is proportional to the magnetic moment. If the electron were point-like, both the methods would yield identical results. In the present paper is studied the magnetic field created by the electron in hydrogen-like ions, which enables one to find the electron magnetic moment by the second method. The electron magnetic moment in this case proves to be different in different states of the electron in the Coulomb field of the ions and, moreover, is distinct from the magnetic moment calculated by the first method. The results of the paper show that the electron is not small and is deformable under action of external fields.
期刊介绍:
The conceptual foundations of physics have been under constant revision from the outset, and remain so today. Discussion of foundational issues has always been a major source of progress in science, on a par with empirical knowledge and mathematics. Examples include the debates on the nature of space and time involving Newton and later Einstein; on the nature of heat and of energy; on irreversibility and probability due to Boltzmann; on the nature of matter and observation measurement during the early days of quantum theory; on the meaning of renormalisation, and many others.
Today, insightful reflection on the conceptual structure utilised in our efforts to understand the physical world is of particular value, given the serious unsolved problems that are likely to demand, once again, modifications of the grammar of our scientific description of the physical world. The quantum properties of gravity, the nature of measurement in quantum mechanics, the primary source of irreversibility, the role of information in physics – all these are examples of questions about which science is still confused and whose solution may well demand more than skilled mathematics and new experiments.
Foundations of Physics is a privileged forum for discussing such foundational issues, open to physicists, cosmologists, philosophers and mathematicians. It is devoted to the conceptual bases of the fundamental theories of physics and cosmology, to their logical, methodological, and philosophical premises.
The journal welcomes papers on issues such as the foundations of special and general relativity, quantum theory, classical and quantum field theory, quantum gravity, unified theories, thermodynamics, statistical mechanics, cosmology, and similar.