Using stochastic simulation modelling to study occupancy levels of decentralised admission avoidance units in Norway

IF 1.2 Q4 HEALTH POLICY & SERVICES Health Systems Pub Date : 2023-02-15 DOI:10.1080/20476965.2023.2174453
Meetali Kakad, M. Utley, F. A. Dahl
{"title":"Using stochastic simulation modelling to study occupancy levels of decentralised admission avoidance units in Norway","authors":"Meetali Kakad, M. Utley, F. A. Dahl","doi":"10.1080/20476965.2023.2174453","DOIUrl":null,"url":null,"abstract":"ABSTRACT Identifying alternatives to acute hospital admission is a priority for many countries. Over 200 decentralised municipal acute units (MAUs) were established in Norway to divert low-acuity patients away from hospitals. MAUs have faced criticism for low mean occupancy and not relieving pressures on hospitals. We developed a discrete time simulation model of admissions and discharges to MAUs to test scenarios for increasing absolute mean occupancy. We also used the model to estimate the number of patients turned away as historical data was unavailable. Our experiments suggest that mergers alone are unlikely to substantially increase MAU absolute mean occupancy as unmet demand is generally low. However, merging MAUs offers scope for up to 20% reduction in bed capacity, without affecting service provision. Our work has relevance for other admissions avoidance units and provides a method for estimating unconstrained demand for beds in the absence of historical data.","PeriodicalId":44699,"journal":{"name":"Health Systems","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/20476965.2023.2174453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"HEALTH POLICY & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT Identifying alternatives to acute hospital admission is a priority for many countries. Over 200 decentralised municipal acute units (MAUs) were established in Norway to divert low-acuity patients away from hospitals. MAUs have faced criticism for low mean occupancy and not relieving pressures on hospitals. We developed a discrete time simulation model of admissions and discharges to MAUs to test scenarios for increasing absolute mean occupancy. We also used the model to estimate the number of patients turned away as historical data was unavailable. Our experiments suggest that mergers alone are unlikely to substantially increase MAU absolute mean occupancy as unmet demand is generally low. However, merging MAUs offers scope for up to 20% reduction in bed capacity, without affecting service provision. Our work has relevance for other admissions avoidance units and provides a method for estimating unconstrained demand for beds in the absence of historical data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用随机模拟模型研究挪威分散式免入单元的入住率
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Health Systems
Health Systems HEALTH POLICY & SERVICES-
CiteScore
4.20
自引率
11.10%
发文量
20
期刊最新文献
Towards new frontiers of healthcare systems research using artificial intelligence and generative AI. Assistance systems for patient positioning in radiotherapy practice. Resilience of hospitals in an age of disruptions: a systematic literature review on resources and capabilities. From digital health to learning health systems: four approaches to using data for digital health design. Using participatory systems approaches to improve healthcare delivery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1