E. V. Nazyrova, N. A. Kononenko, S. A. Shkirskaya, O. A. Demina
{"title":"Comparative Study of Electroosmotic Permeability of Ion Exchange Membrane by Volumetric and Gravimetric Methods","authors":"E. V. Nazyrova, N. A. Kononenko, S. A. Shkirskaya, O. A. Demina","doi":"10.1134/S2517751622030064","DOIUrl":null,"url":null,"abstract":"<p>A procedure has been developed for determining the water transport numbers in an ion-exchange membrane by the gravimetric method. Based on a comparative study of this characteristic by the volumetric and gravimetric methods, the experimental conditions (current density, duration of the experiment, and the concentration range of the electrolyte solution) have been found under which the water transport numbers differ by no more than 5%. The electroosmotic permeability, water content, and electrical conductivity of a heterogeneous cation-exchange membrane MK-40 have been studied in a wide range of concentrations of sodium chloride and sulfate solutions. The influence of the nature of the coion on the equilibrium and dynamic hydration characteristics of a heterogeneous membrane has been evaluated. Using the representation of the membrane as a two-phase system, the structure of the hydrated fixed ion–counterion complex has been quantitatively characterized and the hydration numbers of the sulfo group, the sodium counterion, and the sulfate ion in solution have been calculated.</p>","PeriodicalId":700,"journal":{"name":"Membranes and Membrane Technologies","volume":"4 3","pages":"145 - 152"},"PeriodicalIF":2.0000,"publicationDate":"2022-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes and Membrane Technologies","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2517751622030064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1
Abstract
A procedure has been developed for determining the water transport numbers in an ion-exchange membrane by the gravimetric method. Based on a comparative study of this characteristic by the volumetric and gravimetric methods, the experimental conditions (current density, duration of the experiment, and the concentration range of the electrolyte solution) have been found under which the water transport numbers differ by no more than 5%. The electroosmotic permeability, water content, and electrical conductivity of a heterogeneous cation-exchange membrane MK-40 have been studied in a wide range of concentrations of sodium chloride and sulfate solutions. The influence of the nature of the coion on the equilibrium and dynamic hydration characteristics of a heterogeneous membrane has been evaluated. Using the representation of the membrane as a two-phase system, the structure of the hydrated fixed ion–counterion complex has been quantitatively characterized and the hydration numbers of the sulfo group, the sodium counterion, and the sulfate ion in solution have been calculated.
期刊介绍:
The journal Membranes and Membrane Technologies publishes original research articles and reviews devoted to scientific research and technological advancements in the field of membranes and membrane technologies, including the following main topics:novel membrane materials and creation of highly efficient polymeric and inorganic membranes;hybrid membranes, nanocomposites, and nanostructured membranes;aqueous and nonaqueous filtration processes (micro-, ultra-, and nanofiltration; reverse osmosis);gas separation;electromembrane processes and fuel cells;membrane pervaporation and membrane distillation;membrane catalysis and membrane reactors;water desalination and wastewater treatment;hybrid membrane processes;membrane sensors;membrane extraction and membrane emulsification;mathematical simulation of porous structures and membrane separation processes;membrane characterization;membrane technologies in industry (energy, mineral extraction, pharmaceutics and medicine, chemistry and petroleum chemistry, food industry, and others);membranes and protection of environment (“green chemistry”).The journal has been published in Russian already for several years, English translations of the content used to be integrated in the journal Petroleum Chemistry. This journal is a split off with additional topics.