{"title":"Production of Grafted Vegetable Seedlings in the Republic of Korea: Achievements, Challenges and Perspectives","authors":"S. An, J. Bae, Ho Cheol Kim, Y. Kwack","doi":"10.7235/HORT.20210049","DOIUrl":null,"url":null,"abstract":"Since the first commercial vegetable seedling production business was established in the Republic of Korea in 1992, technologies for the production of vegetable grafted seedlings have been developed. Commercial grafting nurseries have promoted the efficiency of grafted seedling production by the selection and concentration strategy. At present, most scions and rootstocks are concentrated on one or two cultivars and all grafted seedlings are made by the splice grafting method. To overcome the disadvantages of the splice grafting method, such as delayed formation of the grafted union and delayed rooting, light-emitting diode (LED) healing chambers (LHCs) have been developed for enhancing grafted union formation, and are currently used in 20% of commercial grafting nurseries. The commercial grafting nurseries in Korea have been facing highly difficult situations because of climate change, increased seedling production cost and labor shortage. To confront this challengeable circumstance, it is essential to optimize grafted seedling production practices to produce high-quality seedlings at lower cost and low impact on the environment, and to ensure a consistent supply to vegetable growers year round. Here, we explored several practices to improve productivity and reduce the environmental impact of grafted seedling production, including the development of disease resistant or abiotic stress tolerant rootstock cultivars, the development of more precise and efficient facilities and cultivation systems such as a grafting robot, the application of a plant factory with artificial lighting, the improvement of light condition in LHCs, and wastewater reuse. Additional key words: LED healing chamber (LHC), plug tray, rootstock, scion, splice grafting","PeriodicalId":17858,"journal":{"name":"Korean Journal of Horticultural Science & Technology","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Horticultural Science & Technology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.7235/HORT.20210049","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 5
Abstract
Since the first commercial vegetable seedling production business was established in the Republic of Korea in 1992, technologies for the production of vegetable grafted seedlings have been developed. Commercial grafting nurseries have promoted the efficiency of grafted seedling production by the selection and concentration strategy. At present, most scions and rootstocks are concentrated on one or two cultivars and all grafted seedlings are made by the splice grafting method. To overcome the disadvantages of the splice grafting method, such as delayed formation of the grafted union and delayed rooting, light-emitting diode (LED) healing chambers (LHCs) have been developed for enhancing grafted union formation, and are currently used in 20% of commercial grafting nurseries. The commercial grafting nurseries in Korea have been facing highly difficult situations because of climate change, increased seedling production cost and labor shortage. To confront this challengeable circumstance, it is essential to optimize grafted seedling production practices to produce high-quality seedlings at lower cost and low impact on the environment, and to ensure a consistent supply to vegetable growers year round. Here, we explored several practices to improve productivity and reduce the environmental impact of grafted seedling production, including the development of disease resistant or abiotic stress tolerant rootstock cultivars, the development of more precise and efficient facilities and cultivation systems such as a grafting robot, the application of a plant factory with artificial lighting, the improvement of light condition in LHCs, and wastewater reuse. Additional key words: LED healing chamber (LHC), plug tray, rootstock, scion, splice grafting
期刊介绍:
Horticultural Science and Technology (abbr. Hortic. Sci. Technol., herein ‘HST’; ISSN, 1226-8763), one of the two official journals of the Korean Society for Horticultural Science (KSHS), was launched in 1998 to provides scientific and professional publication on technology and sciences of horticultural area. As an international journal, HST is published in English and Korean, bimonthly on the last day of even number months, and indexed in ‘SCIE’, ‘SCOPUS’ and ‘CABI’. The HST is devoted for the publication of technical and academic papers and review articles on such arears as cultivation physiology, protected horticulture, postharvest technology, genetics and breeding, tissue culture and biotechnology, and other related to vegetables, fruit, ornamental, and herbal plants.