Dmitry Chernyak, A. Gainutdinov, J. Jacobsen, H. Saleur
{"title":"Algebraic Bethe Ansatz for the Open XXZ Spin Chain with Non-Diagonal Boundary Terms via $U_{\\mathfrak{q}}\\mathfrak{sl}_2$ Symmetry","authors":"Dmitry Chernyak, A. Gainutdinov, J. Jacobsen, H. Saleur","doi":"10.3842/SIGMA.2023.046","DOIUrl":null,"url":null,"abstract":"We derive by the traditional algebraic Bethe ansatz method the Bethe equations for the general open XXZ spin chain with non-diagonal boundary terms under the Nepomechie constraint [J. Phys. A 37 (2004), 433-440, arXiv:hep-th/0304092]. The technical difficulties due to the breaking of $\\mathsf{U}(1)$ symmetry and the absence of a reference state are overcome by an algebraic construction where the two-boundary Temperley-Lieb Hamiltonian is realised in a new $U_{\\mathfrak{q}}\\mathfrak{sl}_2$-invariant spin chain involving infinite-dimensional Verma modules on the edges [J. High Energy Phys. 2022 (2022), no. 11, 016, 64 pages, arXiv:2207.12772]. The equivalence of the two Hamiltonians is established by proving Schur-Weyl duality between $U_{\\mathfrak{q}}\\mathfrak{sl}_2$ and the two-boundary Temperley-Lieb algebra. In this framework, the Nepomechie condition turns out to have a simple algebraic interpretation in terms of quantum group fusion rules.","PeriodicalId":49453,"journal":{"name":"Symmetry Integrability and Geometry-Methods and Applications","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry Integrability and Geometry-Methods and Applications","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3842/SIGMA.2023.046","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We derive by the traditional algebraic Bethe ansatz method the Bethe equations for the general open XXZ spin chain with non-diagonal boundary terms under the Nepomechie constraint [J. Phys. A 37 (2004), 433-440, arXiv:hep-th/0304092]. The technical difficulties due to the breaking of $\mathsf{U}(1)$ symmetry and the absence of a reference state are overcome by an algebraic construction where the two-boundary Temperley-Lieb Hamiltonian is realised in a new $U_{\mathfrak{q}}\mathfrak{sl}_2$-invariant spin chain involving infinite-dimensional Verma modules on the edges [J. High Energy Phys. 2022 (2022), no. 11, 016, 64 pages, arXiv:2207.12772]. The equivalence of the two Hamiltonians is established by proving Schur-Weyl duality between $U_{\mathfrak{q}}\mathfrak{sl}_2$ and the two-boundary Temperley-Lieb algebra. In this framework, the Nepomechie condition turns out to have a simple algebraic interpretation in terms of quantum group fusion rules.
期刊介绍:
Scope
Geometrical methods in mathematical physics
Lie theory and differential equations
Classical and quantum integrable systems
Algebraic methods in dynamical systems and chaos
Exactly and quasi-exactly solvable models
Lie groups and algebras, representation theory
Orthogonal polynomials and special functions
Integrable probability and stochastic processes
Quantum algebras, quantum groups and their representations
Symplectic, Poisson and noncommutative geometry
Algebraic geometry and its applications
Quantum field theories and string/gauge theories
Statistical physics and condensed matter physics
Quantum gravity and cosmology.