基于无线传感器网络的室内人体日常动作识别 Indoor Human Activity Recognition Using Wireless Sensor Networks

Xiaomu Luo, Huoyuan Tan
{"title":"基于无线传感器网络的室内人体日常动作识别 Indoor Human Activity Recognition Using Wireless Sensor Networks","authors":"Xiaomu Luo, Huoyuan Tan","doi":"10.12677/HJWC.2017.72008","DOIUrl":null,"url":null,"abstract":"实现室内人体定位跟踪与动作智能识别在人口老龄化社会具有重要的现实意义。本文提出了一种通过构造无线传感器网络(Wireless sensor network, WSN)同时解决这两个相关问题的方法。在WSN中,每个热释电红外(Pyroelectric Infrared, PIR)传感器的视场(Field of View, FOV)通过两个自由度(Degrees of freedom, DOF)分割来实现调制,通过位置信息的编码解码实现了人体目标的粗略定位。通过相邻两个传感器节点的数据融合扩大了监测区域,同时提高了人体定位的精确度。动作的持续时间是动作识别的一个关键特征,为此本文构造了一个两层的随机森林(Random Forest, RF)分类器。第一层随机森林用于识别每个数据帧的动作类型,第二层随机森林利用相同动作的持续时间作为有效的特征判断最终的动作类型。实验在真实的室内环境中进行,5种日常动作的10折交叉验证平均准确率高于93%。实验结果表明本文提出的方法可以同时有效地实现人体定位跟踪与日常动作识别。 Human locomotion tracking and activity recognition in the indoor environment are fundamental problems for healthy aging. In this paper, we propose a method to deal with these two coherent problems simultaneously by constructing a wireless sensor network (WSN). In the WSN, the Field of View (FOV) of each Pyroelectric Infrared (PIR) sensor is modulated by two degrees of freedom (DOF) segmentation, which provides coarse location information of the human target. Data fusion of the adjacent sensor nodes enlarges the monitored region and improves the human localization accuracy. To incorporate the activity lasting time as a crucial cue for activity recognition, we build a two-layer Random Forest (RF) classifier. The first layer is utilized to label the activity type for each data frame, and the second layer will utilize the lasting time of the same activity as a useful feature for the final activity classification. We conducted experiments in a mock apartment, and the average mean accuracy for 10-fold cross validation of 5 kinds of daily activities is above 93%. The encouraging results show that our method can achieve human tracking and daily activity recognition simultaneously and effectively.","PeriodicalId":66606,"journal":{"name":"无线通信","volume":"07 1","pages":"53-69"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"无线通信","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.12677/HJWC.2017.72008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

实现室内人体定位跟踪与动作智能识别在人口老龄化社会具有重要的现实意义。本文提出了一种通过构造无线传感器网络(Wireless sensor network, WSN)同时解决这两个相关问题的方法。在WSN中,每个热释电红外(Pyroelectric Infrared, PIR)传感器的视场(Field of View, FOV)通过两个自由度(Degrees of freedom, DOF)分割来实现调制,通过位置信息的编码解码实现了人体目标的粗略定位。通过相邻两个传感器节点的数据融合扩大了监测区域,同时提高了人体定位的精确度。动作的持续时间是动作识别的一个关键特征,为此本文构造了一个两层的随机森林(Random Forest, RF)分类器。第一层随机森林用于识别每个数据帧的动作类型,第二层随机森林利用相同动作的持续时间作为有效的特征判断最终的动作类型。实验在真实的室内环境中进行,5种日常动作的10折交叉验证平均准确率高于93%。实验结果表明本文提出的方法可以同时有效地实现人体定位跟踪与日常动作识别。 Human locomotion tracking and activity recognition in the indoor environment are fundamental problems for healthy aging. In this paper, we propose a method to deal with these two coherent problems simultaneously by constructing a wireless sensor network (WSN). In the WSN, the Field of View (FOV) of each Pyroelectric Infrared (PIR) sensor is modulated by two degrees of freedom (DOF) segmentation, which provides coarse location information of the human target. Data fusion of the adjacent sensor nodes enlarges the monitored region and improves the human localization accuracy. To incorporate the activity lasting time as a crucial cue for activity recognition, we build a two-layer Random Forest (RF) classifier. The first layer is utilized to label the activity type for each data frame, and the second layer will utilize the lasting time of the same activity as a useful feature for the final activity classification. We conducted experiments in a mock apartment, and the average mean accuracy for 10-fold cross validation of 5 kinds of daily activities is above 93%. The encouraging results show that our method can achieve human tracking and daily activity recognition simultaneously and effectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于无线传感器网络的室内人体日常动作识别 Indoor Human Activity Recognition Using Wireless Sensor Networks
实现室内人体定位跟踪与动作智能识别在人口老龄化社会具有重要的现实意义。本文提出了一种通过构造无线传感器网络(Wireless sensor network, WSN)同时解决这两个相关问题的方法。在WSN中,每个热释电红外(Pyroelectric Infrared, PIR)传感器的视场(Field of View, FOV)通过两个自由度(Degrees of freedom, DOF)分割来实现调制,通过位置信息的编码解码实现了人体目标的粗略定位。通过相邻两个传感器节点的数据融合扩大了监测区域,同时提高了人体定位的精确度。动作的持续时间是动作识别的一个关键特征,为此本文构造了一个两层的随机森林(Random Forest, RF)分类器。第一层随机森林用于识别每个数据帧的动作类型,第二层随机森林利用相同动作的持续时间作为有效的特征判断最终的动作类型。实验在真实的室内环境中进行,5种日常动作的10折交叉验证平均准确率高于93%。实验结果表明本文提出的方法可以同时有效地实现人体定位跟踪与日常动作识别。 Human locomotion tracking and activity recognition in the indoor environment are fundamental problems for healthy aging. In this paper, we propose a method to deal with these two coherent problems simultaneously by constructing a wireless sensor network (WSN). In the WSN, the Field of View (FOV) of each Pyroelectric Infrared (PIR) sensor is modulated by two degrees of freedom (DOF) segmentation, which provides coarse location information of the human target. Data fusion of the adjacent sensor nodes enlarges the monitored region and improves the human localization accuracy. To incorporate the activity lasting time as a crucial cue for activity recognition, we build a two-layer Random Forest (RF) classifier. The first layer is utilized to label the activity type for each data frame, and the second layer will utilize the lasting time of the same activity as a useful feature for the final activity classification. We conducted experiments in a mock apartment, and the average mean accuracy for 10-fold cross validation of 5 kinds of daily activities is above 93%. The encouraging results show that our method can achieve human tracking and daily activity recognition simultaneously and effectively.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
195
期刊最新文献
Prediction of Outage Probability of Cooperative Vehicular Network Based on GRNN Research on Directional Sensing of Base Stations Based on 5G Waveform Modular Design of Short-Distance Wireless Audio Transmission System A Dynamic Beam Switching Algorithm for LEO Satellite Based on Communication Traffic Volume Prediction Research on Positioning Enhancement Method of Android Mobile Application Based on Portable GNSS Receiver
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1