A practical environment potential field modelling method for complex geometric objects

IF 1.9 4区 工程技术 Q2 ENGINEERING, MARINE Journal of Navigation Pub Date : 2022-09-15 DOI:10.1017/S0373463322000455
Z. Zhu, Hongguang Lyu, Jun-dong Zhang, Y. Yin, Xiang Fan
{"title":"A practical environment potential field modelling method for complex geometric objects","authors":"Z. Zhu, Hongguang Lyu, Jun-dong Zhang, Y. Yin, Xiang Fan","doi":"10.1017/S0373463322000455","DOIUrl":null,"url":null,"abstract":"Abstract Several studies have been conducted on collision avoidance (CA) and path planning for maritime autonomous surface ships (MASS) based on artificial potential field (APF) and electronic navigation chart (ENC) data. However, to date, accurate, highly efficient, and automatic modelling of complicated geometry environment potential fields (EPFs) has not been realised. In this study, an accurate EPF model is established using ENC data to describe different types of obstacles, navigable areas, and non-navigable areas. The implicit equations of complex polygons are constructed based on the R-function theory, and the discrete-convex hull method is introduced to realise the automatic modelling of EPF. Moreover, collaborative CA and obstacle avoidance (OA) experiments are designed and conducted in a simulated environment and based on the ENC data. The results show that the proposed EPF modelling method is accurate, reliable, and time-efficient even with numerous ENC data and complex shapes owing to the R-function representation for geometric objects and discrete-convex hull method. The combination of improved APF and EPF models is proven to be effective for CA and OA. This paper presents a practical EPF modelling approach for APF-based ship path planning.","PeriodicalId":50120,"journal":{"name":"Journal of Navigation","volume":"76 1","pages":"38 - 61"},"PeriodicalIF":1.9000,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Navigation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/S0373463322000455","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Several studies have been conducted on collision avoidance (CA) and path planning for maritime autonomous surface ships (MASS) based on artificial potential field (APF) and electronic navigation chart (ENC) data. However, to date, accurate, highly efficient, and automatic modelling of complicated geometry environment potential fields (EPFs) has not been realised. In this study, an accurate EPF model is established using ENC data to describe different types of obstacles, navigable areas, and non-navigable areas. The implicit equations of complex polygons are constructed based on the R-function theory, and the discrete-convex hull method is introduced to realise the automatic modelling of EPF. Moreover, collaborative CA and obstacle avoidance (OA) experiments are designed and conducted in a simulated environment and based on the ENC data. The results show that the proposed EPF modelling method is accurate, reliable, and time-efficient even with numerous ENC data and complex shapes owing to the R-function representation for geometric objects and discrete-convex hull method. The combination of improved APF and EPF models is proven to be effective for CA and OA. This paper presents a practical EPF modelling approach for APF-based ship path planning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种实用的复杂几何物体环境势场建模方法
基于人工势场(APF)和电子航海图(ENC)数据,对海上自主水面舰艇(MASS)避碰和路径规划进行了研究。然而,迄今为止,复杂几何环境势场的准确、高效和自动建模尚未实现。在本研究中,利用ENC数据建立了精确的EPF模型来描述不同类型的障碍物、通航区域和非通航区域。基于r函数理论建立了复杂多边形的隐式方程,并引入离散凸包法实现了EPF的自动建模。此外,基于ENC数据,设计并进行了仿真环境下的协同CA和避障实验。结果表明,该方法采用了几何对象的r函数表示和离散凸包法,即使在大量的ENC数据和复杂的形状下,也能准确、可靠、省时。将改进的APF和EPF模型相结合,对CA和OA是有效的。本文提出了一种实用的基于apf的船舶路径规划的EPF建模方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Navigation
Journal of Navigation 工程技术-工程:海洋
CiteScore
6.10
自引率
4.20%
发文量
59
审稿时长
4.6 months
期刊介绍: The Journal of Navigation contains original papers on the science of navigation by man and animals over land and sea and through air and space, including a selection of papers presented at meetings of the Institute and other organisations associated with navigation. Papers cover every aspect of navigation, from the highly technical to the descriptive and historical. Subjects include electronics, astronomy, mathematics, cartography, command and control, psychology and zoology, operational research, risk analysis, theoretical physics, operation in hostile environments, instrumentation, ergonomics, financial planning and law. The journal also publishes selected papers and reports from the Institute’s special interest groups. Contributions come from all parts of the world.
期刊最新文献
The supine moving apprehension test-Reliability and validity among healthy individuals and patients with anterior shoulder instability. GPS + Galileo + BDS-3 medium to long-range single-baseline RTK: an alternative for network-based RTK? Compass adjustment by GPS (or any other GNSS receiver) and a single visual reference Navigation pattern extraction from AIS trajectory big data via topic model The Impact of Vaccination Among Hospitalized Patients with the Diagnosis of COVID-19.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1