Z. Zhu, Hongguang Lyu, Jun-dong Zhang, Y. Yin, Xiang Fan
{"title":"A practical environment potential field modelling method for complex geometric objects","authors":"Z. Zhu, Hongguang Lyu, Jun-dong Zhang, Y. Yin, Xiang Fan","doi":"10.1017/S0373463322000455","DOIUrl":null,"url":null,"abstract":"Abstract Several studies have been conducted on collision avoidance (CA) and path planning for maritime autonomous surface ships (MASS) based on artificial potential field (APF) and electronic navigation chart (ENC) data. However, to date, accurate, highly efficient, and automatic modelling of complicated geometry environment potential fields (EPFs) has not been realised. In this study, an accurate EPF model is established using ENC data to describe different types of obstacles, navigable areas, and non-navigable areas. The implicit equations of complex polygons are constructed based on the R-function theory, and the discrete-convex hull method is introduced to realise the automatic modelling of EPF. Moreover, collaborative CA and obstacle avoidance (OA) experiments are designed and conducted in a simulated environment and based on the ENC data. The results show that the proposed EPF modelling method is accurate, reliable, and time-efficient even with numerous ENC data and complex shapes owing to the R-function representation for geometric objects and discrete-convex hull method. The combination of improved APF and EPF models is proven to be effective for CA and OA. This paper presents a practical EPF modelling approach for APF-based ship path planning.","PeriodicalId":50120,"journal":{"name":"Journal of Navigation","volume":"76 1","pages":"38 - 61"},"PeriodicalIF":1.9000,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Navigation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/S0373463322000455","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract Several studies have been conducted on collision avoidance (CA) and path planning for maritime autonomous surface ships (MASS) based on artificial potential field (APF) and electronic navigation chart (ENC) data. However, to date, accurate, highly efficient, and automatic modelling of complicated geometry environment potential fields (EPFs) has not been realised. In this study, an accurate EPF model is established using ENC data to describe different types of obstacles, navigable areas, and non-navigable areas. The implicit equations of complex polygons are constructed based on the R-function theory, and the discrete-convex hull method is introduced to realise the automatic modelling of EPF. Moreover, collaborative CA and obstacle avoidance (OA) experiments are designed and conducted in a simulated environment and based on the ENC data. The results show that the proposed EPF modelling method is accurate, reliable, and time-efficient even with numerous ENC data and complex shapes owing to the R-function representation for geometric objects and discrete-convex hull method. The combination of improved APF and EPF models is proven to be effective for CA and OA. This paper presents a practical EPF modelling approach for APF-based ship path planning.
期刊介绍:
The Journal of Navigation contains original papers on the science of navigation by man and animals over land and sea and through air and space, including a selection of papers presented at meetings of the Institute and other organisations associated with navigation. Papers cover every aspect of navigation, from the highly technical to the descriptive and historical. Subjects include electronics, astronomy, mathematics, cartography, command and control, psychology and zoology, operational research, risk analysis, theoretical physics, operation in hostile environments, instrumentation, ergonomics, financial planning and law. The journal also publishes selected papers and reports from the Institute’s special interest groups. Contributions come from all parts of the world.