Renovation or Redevelopment: The Case of Smart Decision-Support in Aging Buildings

IF 7 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Smart Cities Pub Date : 2023-08-10 DOI:10.3390/smartcities6040089
Bin Wu, Reza Maalek
{"title":"Renovation or Redevelopment: The Case of Smart Decision-Support in Aging Buildings","authors":"Bin Wu, Reza Maalek","doi":"10.3390/smartcities6040089","DOIUrl":null,"url":null,"abstract":"In Germany, as in many developed countries, over 60% of buildings were constructed before 1978, where most are in critical condition, requiring either demolition with plans for redevelopment or renovation and rehabilitation. Given the urgency of climate action and relevant sustainable development goals set by the United Nations, more attention must be shifted toward the various sustainability aspects when deciding on a strategy for the renovation or redevelopment of existing buildings. To this end, this study focused on developing a smart decision support framework for aging buildings based on lifecycle sustainability considerations. The framework integrated digital technological advancements, such as building information modeling (BIM), point clouds processing with field information modeling (FIM)®, and structural optimization, together with lifecycle assessment to evaluate and rate the environmental impact of different solutions. Three sustainability aspects, namely, cost, energy consumption, and carbon emissions, were quantitatively evaluated and compared in two scenarios, namely, renovation, and demolition or deconstruction combined with redevelopment. A real building constructed in 1961 was the subject of the experiments to validate the framework. The result outlined the limitations and advantages of each method in terms of economics and sustainability. It was further observed that optimizing the building design with the goal of reducing embodied energy and carbon in compliance with modern energy standards was crucial to improving overall energy performance. This work demonstrated that the BIM-based framework developed to assess the environmental impact of rehabilitation work in aging buildings can provide effective ratings to guide decision-making in real-world projects.","PeriodicalId":34482,"journal":{"name":"Smart Cities","volume":" ","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Cities","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.3390/smartcities6040089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In Germany, as in many developed countries, over 60% of buildings were constructed before 1978, where most are in critical condition, requiring either demolition with plans for redevelopment or renovation and rehabilitation. Given the urgency of climate action and relevant sustainable development goals set by the United Nations, more attention must be shifted toward the various sustainability aspects when deciding on a strategy for the renovation or redevelopment of existing buildings. To this end, this study focused on developing a smart decision support framework for aging buildings based on lifecycle sustainability considerations. The framework integrated digital technological advancements, such as building information modeling (BIM), point clouds processing with field information modeling (FIM)®, and structural optimization, together with lifecycle assessment to evaluate and rate the environmental impact of different solutions. Three sustainability aspects, namely, cost, energy consumption, and carbon emissions, were quantitatively evaluated and compared in two scenarios, namely, renovation, and demolition or deconstruction combined with redevelopment. A real building constructed in 1961 was the subject of the experiments to validate the framework. The result outlined the limitations and advantages of each method in terms of economics and sustainability. It was further observed that optimizing the building design with the goal of reducing embodied energy and carbon in compliance with modern energy standards was crucial to improving overall energy performance. This work demonstrated that the BIM-based framework developed to assess the environmental impact of rehabilitation work in aging buildings can provide effective ratings to guide decision-making in real-world projects.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改造或再开发:老化建筑的智能决策支持案例
与许多发达国家一样,在德国,超过60%的建筑是在1978年之前建造的,其中大多数都处于危急状态,需要拆除并计划重建或翻新和修复。鉴于气候行动的紧迫性和联合国制定的相关可持续发展目标,在决定现有建筑的翻新或重建战略时,必须更多地关注可持续性的各个方面。为此,本研究的重点是基于生命周期可持续性考虑,为老化建筑开发一个智能决策支持框架。该框架集成了数字技术进步,如建筑信息模型(BIM)、现场信息模型(FIM)®的点云处理和结构优化,以及生命周期评估,以评估和评估不同解决方案的环境影响。在改造和拆除或解构结合再开发两种情景下,对成本、能耗和碳排放三个可持续性方面进行了定量评价和比较。为了验证这个框架,实验对象是一座建于1961年的真实建筑。结果概述了每种方法在经济性和可持续性方面的局限性和优势。进一步指出,根据现代能源标准,优化建筑设计,以减少隐含能源和碳排放,对提高整体能源绩效至关重要。这项工作表明,基于bim的框架开发用于评估老化建筑修复工作的环境影响,可以提供有效的评级,以指导现实世界项目的决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Smart Cities
Smart Cities Multiple-
CiteScore
11.20
自引率
6.20%
发文量
0
审稿时长
11 weeks
期刊介绍: Smart Cities (ISSN 2624-6511) provides an advanced forum for the dissemination of information on the science and technology of smart cities, publishing reviews, regular research papers (articles) and communications in all areas of research concerning smart cities. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible, with no restriction on the maximum length of the papers published so that all experimental results can be reproduced.
期刊最新文献
Vision-Based Object Localization and Classification for Electric Vehicle Driving Assistance Smart Grid Resilience for Grid-Connected PV and Protection Systems under Cyber Threats Tech Giants’ Responsible Innovation and Technology Strategy: An International Policy Review Grid Impact of Wastewater Resource Recovery Facilities-Based Community Microgrids Development of a Microservice-Based Storm Sewer Simulation System with IoT Devices for Early Warning in Urban Areas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1