Model of the planar broadband differential waveguide interferometer as a humidity sensor

IF 0.5 Q4 OPTICS Photonics Letters of Poland Pub Date : 2020-07-01 DOI:10.4302/plp.v12i2.1022
K. Gut
{"title":"Model of the planar broadband differential waveguide interferometer as a humidity sensor","authors":"K. Gut","doi":"10.4302/plp.v12i2.1022","DOIUrl":null,"url":null,"abstract":"The paper presents a model of the planar broadband differential waveguide interferometer. Its response to the change in thickness and refractive index of the waveguide layer due to the change in humidity is presented. The analysis was carried out for the wavelength range from 450 nm to 850 nm. The orthogonal modes TE0 and TM0, which propagate in this wavelength range, are considered. It is shown that by using light near the maximum of the system characteristic, instead of the spectrometer, the total power at the system output can be measured. Full Text: PDF References M. Kitsara, K. Misiakos, I. Raptis, and E. Makarona, \"Integrated optical frequency-resolved Mach-Zehnder interferometers for label-free affinity sensing\", Opt. Express 18, 8193 (2010). CrossRef K. Misiakos, I. Raptis, A. Salapatas, E. Makarona, A. Bostials, et al., \"Broad-band Mach-Zehnder interferometers as high performance refractive index sensors: Theory and monolithic implementation\", Opt. Express 22, 8856 (2014). CrossRef K. Misiakos, I. Raptis, E. Makarona, A. Botsialas, A. Salapatas, et al \"All-silicon monolithic Mach-Zehnder interferometer as a refractive index and bio-chemical sensor\", Opt. Express 22, 26803 (2014). CrossRef K. Misiakos, E. Makarona, M. Hoekman, R. Fyrogenis, K. Tukkiniemi, et al., \"All-Silicon Spectrally Resolved Interferometric Circuit for Multiplexed Diagnostics: A Monolithic Lab-on-a-Chip Integrating All Active and Passive Components\", ACS Photonics 6, 1694 (2019). CrossRef E. Makarona, A. Salapatas, I. Raptis, P. Petrou, S. Kakabakos, et al., \"Broadband Young interferometry for simultaneous dual polarization bioanalytics\", J Opt Soc Am B 34, 1691 (2017). CrossRef K. Gut, \"Broad-band difference interferometer as a refractive index sensor\", Opt. Express 25, 3111 (2017). CrossRef K. Gut, \"Study of a Broadband Difference Interferometer Based on Low-Cost Polymer Slab Waveguides\", Nanomaterials 9, 729 (2019). CrossRef W. Lukosz, \"Integrated optical chemical and direct biochemical sensors\", Sensor Actuat. B-Chem. 29, 37 (1995). CrossRef W. Knoll, O. Azzaroni, H. Duran, J. Kunze-Liebhauser, K. Lau, et al. \"Nanoporous thin films in optical waveguide spectroscopy for chemical analytics\", Analytical and Bioanalytical Chemistry 412, 3299 (2020). CrossRef A. Bucciarellia, V. Mullonib, D. Maniglio, R.K. Pal, V.K. Yadavalli, at al., \"A comparative study of the refractive index of silk protein thin films towards biomaterial based optical devices\", Optical Materials 78, 407 (2018). CrossRef V.Prajzler, K. Min, S. Kim, and P. Nekvindova, \"The Investigation of the Waveguiding Properties of Silk Fibroin from the Visible to Near-Infrared Spectrum\", Materials 11, 112 (2018). CrossRef Q. Li, N. Qi, Y. Peng, Y. Zhange, L.Shi, et al. \"Aggregation induced red shift emission of phosphorus doped carbon dots\", RSC Advances 7, 178889 (2017). CrossRef P. Giovanni, Z. Yuji, N. Deboki, P. Nereus, D. Kaplan, et al. \"The optical properties of regenerated silk fibroin films obtained from different sources\", App. Phys. Lett. 111, 103702 (2017). CrossRef M. Procek, Z. Opilski, A. M. Maquenda, X.M. Berbel, S.Aznar-Cervantes et al., \"Silk fibroin thin films for optical humidity sensing\", Proceedings of SPIE 11204,1120409 (2019). CrossRef https://www.thorlabs.com/thorproduct.cfm?partnumber=M595F2 DirectLink","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":"12 1","pages":"55-57"},"PeriodicalIF":0.5000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics Letters of Poland","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4302/plp.v12i2.1022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The paper presents a model of the planar broadband differential waveguide interferometer. Its response to the change in thickness and refractive index of the waveguide layer due to the change in humidity is presented. The analysis was carried out for the wavelength range from 450 nm to 850 nm. The orthogonal modes TE0 and TM0, which propagate in this wavelength range, are considered. It is shown that by using light near the maximum of the system characteristic, instead of the spectrometer, the total power at the system output can be measured. Full Text: PDF References M. Kitsara, K. Misiakos, I. Raptis, and E. Makarona, "Integrated optical frequency-resolved Mach-Zehnder interferometers for label-free affinity sensing", Opt. Express 18, 8193 (2010). CrossRef K. Misiakos, I. Raptis, A. Salapatas, E. Makarona, A. Bostials, et al., "Broad-band Mach-Zehnder interferometers as high performance refractive index sensors: Theory and monolithic implementation", Opt. Express 22, 8856 (2014). CrossRef K. Misiakos, I. Raptis, E. Makarona, A. Botsialas, A. Salapatas, et al "All-silicon monolithic Mach-Zehnder interferometer as a refractive index and bio-chemical sensor", Opt. Express 22, 26803 (2014). CrossRef K. Misiakos, E. Makarona, M. Hoekman, R. Fyrogenis, K. Tukkiniemi, et al., "All-Silicon Spectrally Resolved Interferometric Circuit for Multiplexed Diagnostics: A Monolithic Lab-on-a-Chip Integrating All Active and Passive Components", ACS Photonics 6, 1694 (2019). CrossRef E. Makarona, A. Salapatas, I. Raptis, P. Petrou, S. Kakabakos, et al., "Broadband Young interferometry for simultaneous dual polarization bioanalytics", J Opt Soc Am B 34, 1691 (2017). CrossRef K. Gut, "Broad-band difference interferometer as a refractive index sensor", Opt. Express 25, 3111 (2017). CrossRef K. Gut, "Study of a Broadband Difference Interferometer Based on Low-Cost Polymer Slab Waveguides", Nanomaterials 9, 729 (2019). CrossRef W. Lukosz, "Integrated optical chemical and direct biochemical sensors", Sensor Actuat. B-Chem. 29, 37 (1995). CrossRef W. Knoll, O. Azzaroni, H. Duran, J. Kunze-Liebhauser, K. Lau, et al. "Nanoporous thin films in optical waveguide spectroscopy for chemical analytics", Analytical and Bioanalytical Chemistry 412, 3299 (2020). CrossRef A. Bucciarellia, V. Mullonib, D. Maniglio, R.K. Pal, V.K. Yadavalli, at al., "A comparative study of the refractive index of silk protein thin films towards biomaterial based optical devices", Optical Materials 78, 407 (2018). CrossRef V.Prajzler, K. Min, S. Kim, and P. Nekvindova, "The Investigation of the Waveguiding Properties of Silk Fibroin from the Visible to Near-Infrared Spectrum", Materials 11, 112 (2018). CrossRef Q. Li, N. Qi, Y. Peng, Y. Zhange, L.Shi, et al. "Aggregation induced red shift emission of phosphorus doped carbon dots", RSC Advances 7, 178889 (2017). CrossRef P. Giovanni, Z. Yuji, N. Deboki, P. Nereus, D. Kaplan, et al. "The optical properties of regenerated silk fibroin films obtained from different sources", App. Phys. Lett. 111, 103702 (2017). CrossRef M. Procek, Z. Opilski, A. M. Maquenda, X.M. Berbel, S.Aznar-Cervantes et al., "Silk fibroin thin films for optical humidity sensing", Proceedings of SPIE 11204,1120409 (2019). CrossRef https://www.thorlabs.com/thorproduct.cfm?partnumber=M595F2 DirectLink
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
平面宽带差分波导干涉仪作为湿度传感器的模型
本文提出了一种平面宽带差分波导干涉仪的模型。给出了它对由于湿度变化而引起的波导层厚度和折射率变化的响应。对450nm至850nm的波长范围进行分析。考虑在该波长范围内传播的正交模式TE0和TM0。结果表明,通过使用接近系统特性最大值的光,而不是光谱仪,可以测量系统输出的总功率。全文:PDF参考文献M.Kitsara、K.Misiakos、I.Raptis和E.Makarona,“用于无标签亲和传感的集成光学频率分辨Mach-Zehnder干涉仪”,Opt。《快报》188193(2010)。CrossRef K.Misiakos,I.Raptis,A.Salapatas,E.Makarona,A.Bostials等人,“作为高性能折射率传感器的宽带Mach-Zehnder干涉仪:理论和单片实现”,Opt。《快报》228856(2014)。CrossRef K.Misiakos,I.Raptis,E.Makarona,A.Botsialas,A.Salapatas等人“作为折射率和生化传感器的全硅单片Mach-Zehnder干涉仪”,Opt。《快报》226803(2014)。CrossRef K.Misiakos,E.Makarona,M.Hoekman,R.Fyrogenis,K.Tukkiniemi等人,“用于多路诊断的全硅光谱分辨干涉电路:集成所有有源和无源组件的单片芯片实验室”,ACS Photonics 61694(2019)。CrossRef E.Makarona,A.Salapatas,I.Raptis,P.Petrou,S.Kakabakos等人,“用于同时双极化生物分析的宽带杨氏干涉测量法”,《美国光学学会杂志》B 341691(2017)。CrossRef K.Gut,“作为折射率传感器的宽带差分干涉仪”,Opt。Express 2513111(2017)。CrossRef K.Gut,“基于低成本聚合物平板波导的宽带差分干涉仪的研究”,纳米材料9,729(2019)。CrossRef W.Lukosz,“集成光学化学和直接生化传感器”,传感器学报。B-化学。29,37(1995)。CrossRef W.Knoll,O.Azzaroni,H.Duran,J.Kunze Liebhauser,K.Lau等人,“用于化学分析的光波导光谱中的纳米多孔薄膜”,《分析与生物分析化学》4123299(2020)。CrossRef A.Bucciarelia,V.Mullonib,D.Maniglio,R.K.Pal,V.K.Yadavalli等人,“丝蛋白薄膜对基于生物材料的光学器件折射率的比较研究”,《光学材料》78407(2018)。CrossRef V.Prajzler,K.Min,S.Kim和P.Nekvindova,“从可见光谱到近红外光谱对丝素波导特性的研究”,材料11,112(2018)。CrossRef Q.Li,N.Qi,Y.Peng,Y.Zhange,L.Shi,et al.“磷掺杂碳点的聚集诱导红移发射”,RSC Advances 7,178889(2017)。CrossRef P.Giovanni,Z.Yuji,N.Deboki,P.Nereus,D.Kaplan等,“从不同来源获得的再生丝素蛋白膜的光学性质”,App。Phys。Lett。111103702(2017)。CrossRef M.Procek,Z.Opilski,A.M.Maquenda,X.M.Berbel,S.Aznar-Cervantes等人,“用于光学湿度传感的丝素蛋白薄膜”,SPIE论文集112041120409(2019)。CrossRefhttps://www.thorlabs.com/thorproduct.cfm?partnumber=M595F2DirectLink
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
24
期刊最新文献
Making use of Digital Image Correlation to identify the true character of the applied load Technological challenges in the development of silica-titania platform for integrated optics Modelling of Germanium-Based Perovskite Solar Cell for Different Hole Transport Materials and Defect Density Application of fiber optic sensors using Machine Learning algorithms for temperature measurement of lithium-ion batteries Focusing properties of Azimuthally Polarized Lorentz Gauss Vortex Beam through a Dielectric Interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1