{"title":"Real‐time rotor effective wind speed estimation based on actuator disc theory: Design and full‐scale experimental validation","authors":"A. Lio, F. Meng, G. Larsen","doi":"10.1002/we.2858","DOIUrl":null,"url":null,"abstract":"{ The use of state estimation techniques offers a means of inferring rotor effective wind speed from standard measurements of wind turbines. Typical wind speed estimators rely upon a pre-computed quasi-steady aerodynamic mapping, which describes the relationship between pitch angle and tip-speed ratio and the power coefficient. In practice, the static mapping does not capture the influence of turbine structural dynamics and atmospheric turbulence, inevitably resulting in poor performance of the wind speed estimation. In addition, the turbine aerodynamic properties might not be easily accessible. Thus, this paper presents a rotor effective wind speed estimation method that obviates the requirement for prior knowledge of turbine power coefficients. Specifically, the proposed method exploits a simple actuator disc model, where the aerodynamic power and thrust coefficients can be characterised in terms of axial induction factors. Based on this insight and standard turbine measurements, real-time estimation of rotor effective wind speed and axial induction factors can then be achieved using a simplified turbine","PeriodicalId":23689,"journal":{"name":"Wind Energy","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/we.2858","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
{ The use of state estimation techniques offers a means of inferring rotor effective wind speed from standard measurements of wind turbines. Typical wind speed estimators rely upon a pre-computed quasi-steady aerodynamic mapping, which describes the relationship between pitch angle and tip-speed ratio and the power coefficient. In practice, the static mapping does not capture the influence of turbine structural dynamics and atmospheric turbulence, inevitably resulting in poor performance of the wind speed estimation. In addition, the turbine aerodynamic properties might not be easily accessible. Thus, this paper presents a rotor effective wind speed estimation method that obviates the requirement for prior knowledge of turbine power coefficients. Specifically, the proposed method exploits a simple actuator disc model, where the aerodynamic power and thrust coefficients can be characterised in terms of axial induction factors. Based on this insight and standard turbine measurements, real-time estimation of rotor effective wind speed and axial induction factors can then be achieved using a simplified turbine
期刊介绍:
Wind Energy offers a major forum for the reporting of advances in this rapidly developing technology with the goal of realising the world-wide potential to harness clean energy from land-based and offshore wind. The journal aims to reach all those with an interest in this field from academic research, industrial development through to applications, including individual wind turbines and components, wind farms and integration of wind power plants. Contributions across the spectrum of scientific and engineering disciplines concerned with the advancement of wind power capture, conversion, integration and utilisation technologies are essential features of the journal.