Study of Material Properties under Complex Conditions of Low-Cycle Deformation

IF 0.9 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Inorganic Materials Pub Date : 2023-03-07 DOI:10.1134/S0020168522150067
N. A. Makhutov, M. M. Gadenin, O. F. Cherniavsky, A. O. Cherniavsky
{"title":"Study of Material Properties under Complex Conditions of Low-Cycle Deformation","authors":"N. A. Makhutov,&nbsp;M. M. Gadenin,&nbsp;O. F. Cherniavsky,&nbsp;A. O. Cherniavsky","doi":"10.1134/S0020168522150067","DOIUrl":null,"url":null,"abstract":"<p>The operability of structures in complex combined loading modes depends on a significant number of combinations of operational parameters of thermomechanical impacts in terms of loads, temperatures, times, numbers of cycles, and strain rates. The main strain patterns of structural materials under complex conditions are established using combined standard, unified, and special tests under laboratory conditions. With the use of representative substantiations of physicochemical models for strain diagrams in a wide range of loading conditions and with allowance for the scale diversity of models, the material structure, and the responsibility of structures, we propose a step-by-step consideration of the corresponding strain types: elastic, sign-alternating flow, progressive strain accumulation, and their combinations. In this case, structural calculations can be built as a hierarchical system, in which each next level refines the boundaries of permissible impacts toward expansion of the range of acting loads, temperatures, rates, and strain modes, which is associated with an increase in the amount of required initial data and complicates calculations. The proposed methods for schematization of physicomechanical properties and types of state equations for describing strain curves account for the compactness requirements of the initial data and the need to use both standard and unified methods for determining the characteristics of cyclic inelastic deformation and special methods. Both from a theoretical standpoint and from the viewpoint of practical applications, power equations are the most reasonable to describe the kinetics of strain diagrams under the considered conditions. Exponential dependences are suitable to reflect the role of the temperature factor while power dependences are suitable to take into account the time and strain-rate factors and two-frequency loading conditions. Ensuring the maximum possible use of the strain and strength reserves of materials and structures, refined calculations at higher, more complex levels of the considered hierarchy must be based on kinetic dependences describing low-cycle deformation in complex loading modes.</p>","PeriodicalId":585,"journal":{"name":"Inorganic Materials","volume":"58 15","pages":"1563 - 1570"},"PeriodicalIF":0.9000,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S0020168522150067","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

The operability of structures in complex combined loading modes depends on a significant number of combinations of operational parameters of thermomechanical impacts in terms of loads, temperatures, times, numbers of cycles, and strain rates. The main strain patterns of structural materials under complex conditions are established using combined standard, unified, and special tests under laboratory conditions. With the use of representative substantiations of physicochemical models for strain diagrams in a wide range of loading conditions and with allowance for the scale diversity of models, the material structure, and the responsibility of structures, we propose a step-by-step consideration of the corresponding strain types: elastic, sign-alternating flow, progressive strain accumulation, and their combinations. In this case, structural calculations can be built as a hierarchical system, in which each next level refines the boundaries of permissible impacts toward expansion of the range of acting loads, temperatures, rates, and strain modes, which is associated with an increase in the amount of required initial data and complicates calculations. The proposed methods for schematization of physicomechanical properties and types of state equations for describing strain curves account for the compactness requirements of the initial data and the need to use both standard and unified methods for determining the characteristics of cyclic inelastic deformation and special methods. Both from a theoretical standpoint and from the viewpoint of practical applications, power equations are the most reasonable to describe the kinetics of strain diagrams under the considered conditions. Exponential dependences are suitable to reflect the role of the temperature factor while power dependences are suitable to take into account the time and strain-rate factors and two-frequency loading conditions. Ensuring the maximum possible use of the strain and strength reserves of materials and structures, refined calculations at higher, more complex levels of the considered hierarchy must be based on kinetic dependences describing low-cycle deformation in complex loading modes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低周变形复杂条件下材料性能研究
结构在复杂组合加载模式下的可操作性取决于在载荷、温度、时间、循环次数和应变率方面的大量热机械影响操作参数的组合。在实验室条件下,采用联合标准试验、统一试验和专用试验建立了结构材料在复杂条件下的主要应变模式。在广泛的加载条件下,使用具有代表性的应变图物理化学模型的证据,并考虑到模型的尺度多样性、材料结构和结构的责任,我们提出了相应应变类型的逐步考虑:弹性、符号交替流动、渐进应变积累及其组合。在这种情况下,结构计算可以构建为一个分层系统,其中每一层都细化允许的冲击边界,以扩展作用载荷、温度、速率和应变模式的范围,这与所需初始数据量的增加和复杂的计算有关。所提出的物理力学性能示意图方法和描述应变曲线的状态方程类型考虑到初始数据的紧凑性要求,以及使用标准和统一方法确定循环非弹性变形特征和特殊方法的需要。无论从理论角度还是从实际应用的角度来看,功率方程都是描述所考虑条件下应变图动力学的最合理的方法。指数依赖关系适合反映温度因素的作用,功率依赖关系适合考虑时间和应变率因素以及双频加载条件。为了最大限度地利用材料和结构的应变和强度储备,在更高、更复杂的层次上进行精细计算,必须基于描述复杂加载模式下低周期变形的动力学依赖关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Inorganic Materials
Inorganic Materials 工程技术-材料科学:综合
CiteScore
1.40
自引率
25.00%
发文量
80
审稿时长
3-6 weeks
期刊介绍: Inorganic Materials is a journal that publishes reviews and original articles devoted to chemistry, physics, and applications of various inorganic materials including high-purity substances and materials. The journal discusses phase equilibria, including P–T–X diagrams, and the fundamentals of inorganic materials science, which determines preparatory conditions for compounds of various compositions with specified deviations from stoichiometry. Inorganic Materials is a multidisciplinary journal covering all classes of inorganic materials. The journal welcomes manuscripts from all countries in the English or Russian language.
期刊最新文献
Prediction of the Durability of a Plate with a Through Crack Taking into Account Biaxial Constraints of Deformations along the Front of a Normal Rupture Crack Refined Method for Estimating the Interlayer Shear Modulus by Correcting the Deflection of Polymer Composite Specimens Fields of Residual Stresses near Open Assemblage Holes of Aircraft Wing Panel On the Features of Inhomogeneous Residual Stress Identification Using the Digital Speckle Interferometry and the Hole-Drilling Method Actual Problems of Creating Digital Twins of Machine Engineering Products in Terms of Durability Assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1