{"title":"Controlled growth of a graphdiyne-Prussian blue analog heterostructure for efficient ammonia production","authors":"Yaqi Gao, Huimin Liu, Zhiqiang Zheng, Xiaoyu Luan, Yurui Xue, Yuliang Li","doi":"10.1038/s41427-022-00439-8","DOIUrl":null,"url":null,"abstract":"Selective and efficient ammonia (NH3) production using an electrocatalytic nitrate reduction reaction (ECNtRR) under ambient conditions provides a green and promising alternative to the traditional energy-intensive Haber–Bosch process. The challenge is in design and controlled syntheses of efficient electrocatalysts with high selectivities, high NH3 yield rates (YNH3) and long-term stabilities. Here, a freestanding three-dimensional graphdiyne-hollowed FeCoNi Prussian blue analog electrode (h-FeCoNi PBA@GDY) with highly selective and active interfaces was synthesized by in situ growth of a GDY layer on the surface of h-FeCoNi PBA and used for the ECNtRR in alkaline solution at ambient temperatures and pressures. The experimental results demonstrated that the uniquely incomplete charge transfer between metal atoms and GDY effectively enhanced the intrinsic activity and increased the number of active sites of the electrocatalyst and promoted fast redox switching and high-density charge transport at the interface, which resulted in high selectivity, activity and stability for the ECNtRR. The results indicated that the electrocatalyst showed a Faraday efficiency (FE) of 95.1% with a YNH3 of 1015.5 μmol h−1 cm−2 and excellent stability. A freestanding three-dimensional graphdiyne-hollowed FeCoNi Prussian blue analog electrode (h-FeCoNi PBA@GDY) with highly selective and active interfaces was synthesized by in situ growth of GDY layer on the surface of h-FeCoNi PBA for electrocatalytic nitrate reduction reaction (ECNtRR) at ambient temperatures and pressures. Experimental results demonstrate the presence of the unique incomplete charge transfer between metal atoms and GDY can effectively enhance the intrinsic activity and the ability to increase the active sites of the electrocatalyst, promote fast redox switching, and high-density charge transport at the interface resulting in high reaction selectivity, activity and stability for ammonia production.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"15 1","pages":"1-10"},"PeriodicalIF":8.6000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-022-00439-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Npg Asia Materials","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41427-022-00439-8","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Selective and efficient ammonia (NH3) production using an electrocatalytic nitrate reduction reaction (ECNtRR) under ambient conditions provides a green and promising alternative to the traditional energy-intensive Haber–Bosch process. The challenge is in design and controlled syntheses of efficient electrocatalysts with high selectivities, high NH3 yield rates (YNH3) and long-term stabilities. Here, a freestanding three-dimensional graphdiyne-hollowed FeCoNi Prussian blue analog electrode (h-FeCoNi PBA@GDY) with highly selective and active interfaces was synthesized by in situ growth of a GDY layer on the surface of h-FeCoNi PBA and used for the ECNtRR in alkaline solution at ambient temperatures and pressures. The experimental results demonstrated that the uniquely incomplete charge transfer between metal atoms and GDY effectively enhanced the intrinsic activity and increased the number of active sites of the electrocatalyst and promoted fast redox switching and high-density charge transport at the interface, which resulted in high selectivity, activity and stability for the ECNtRR. The results indicated that the electrocatalyst showed a Faraday efficiency (FE) of 95.1% with a YNH3 of 1015.5 μmol h−1 cm−2 and excellent stability. A freestanding three-dimensional graphdiyne-hollowed FeCoNi Prussian blue analog electrode (h-FeCoNi PBA@GDY) with highly selective and active interfaces was synthesized by in situ growth of GDY layer on the surface of h-FeCoNi PBA for electrocatalytic nitrate reduction reaction (ECNtRR) at ambient temperatures and pressures. Experimental results demonstrate the presence of the unique incomplete charge transfer between metal atoms and GDY can effectively enhance the intrinsic activity and the ability to increase the active sites of the electrocatalyst, promote fast redox switching, and high-density charge transport at the interface resulting in high reaction selectivity, activity and stability for ammonia production.
期刊介绍:
NPG Asia Materials is an open access, international journal that publishes peer-reviewed review and primary research articles in the field of materials sciences. The journal has a global outlook and reach, with a base in the Asia-Pacific region to reflect the significant and growing output of materials research from this area. The target audience for NPG Asia Materials is scientists and researchers involved in materials research, covering a wide range of disciplines including physical and chemical sciences, biotechnology, and nanotechnology. The journal particularly welcomes high-quality articles from rapidly advancing areas that bridge the gap between materials science and engineering, as well as the classical disciplines of physics, chemistry, and biology. NPG Asia Materials is abstracted/indexed in Journal Citation Reports/Science Edition Web of Knowledge, Google Scholar, Chemical Abstract Services, Scopus, Ulrichsweb (ProQuest), and Scirus.