{"title":"Low-voltage Low-power Bulk-driven CMOS Op-Amp Using Negative Miller Compensation for ECG","authors":"Muhaned Zaidi","doi":"10.5614/j.eng.technol.sci.2022.54.5.10","DOIUrl":null,"url":null,"abstract":"Two bulk-driven CMOS (Complementary Metal Oxide Semiconductor) operational amplifier (op-amp) designs for electrocardiogram (ECG) application are presented and compared in this paper. Both op-amps are based on two-stage amplification, where bulk-driven differential input is the first stage, while additional DC gain is the second stage. Different compensation techniques were integrated in each op-amp design. Standard Miller compensation was used for the first op-amp parallel with the second stage. The novelty of the second op-amp is that it utilizes negative Miller compensation between the bulk-driven input node and the output node of the first stag, while standard Miller compensation was used in the second stage. The purpose of this work was to compare DC gain, phase margin (PM) and unit gain frequency (UGF) obtained through different simulated compensation strategies and test results. The op-amps were simulated using 0.25 μm CMOS technology. The simulation results are presented using the standard model libraries from Tanner EDA tools, operating on a single rail +0.8V power supply.","PeriodicalId":15689,"journal":{"name":"Journal of Engineering and Technological Sciences","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering and Technological Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/j.eng.technol.sci.2022.54.5.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Two bulk-driven CMOS (Complementary Metal Oxide Semiconductor) operational amplifier (op-amp) designs for electrocardiogram (ECG) application are presented and compared in this paper. Both op-amps are based on two-stage amplification, where bulk-driven differential input is the first stage, while additional DC gain is the second stage. Different compensation techniques were integrated in each op-amp design. Standard Miller compensation was used for the first op-amp parallel with the second stage. The novelty of the second op-amp is that it utilizes negative Miller compensation between the bulk-driven input node and the output node of the first stag, while standard Miller compensation was used in the second stage. The purpose of this work was to compare DC gain, phase margin (PM) and unit gain frequency (UGF) obtained through different simulated compensation strategies and test results. The op-amps were simulated using 0.25 μm CMOS technology. The simulation results are presented using the standard model libraries from Tanner EDA tools, operating on a single rail +0.8V power supply.
期刊介绍:
Journal of Engineering and Technological Sciences welcomes full research articles in the area of Engineering Sciences from the following subject areas: Aerospace Engineering, Biotechnology, Chemical Engineering, Civil Engineering, Electrical Engineering, Engineering Physics, Environmental Engineering, Industrial Engineering, Information Engineering, Mechanical Engineering, Material Science and Engineering, Manufacturing Processes, Microelectronics, Mining Engineering, Petroleum Engineering, and other application of physical, biological, chemical and mathematical sciences in engineering. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere.