Ab-initio binding of barnase–barstar with DelPhiForce steered Molecular Dynamics (DFMD) approach

IF 2.4 Q3 Computer Science Journal of Theoretical & Computational Chemistry Pub Date : 2020-06-01 DOI:10.1142/s0219633620500169
Mahesh Koirala, E. Alexov
{"title":"Ab-initio binding of barnase–barstar with DelPhiForce steered Molecular Dynamics (DFMD) approach","authors":"Mahesh Koirala, E. Alexov","doi":"10.1142/s0219633620500169","DOIUrl":null,"url":null,"abstract":"Receptor–ligand interactions are involved in various biological processes, therefore understanding the binding mechanism and ability to predict the binding mode are essential for many biological investigations. While many computational methods exist to predict the 3D structure of the corresponding complex provided the knowledge of the monomers, here we use the newly developed DelPhiForce steered Molecular Dynamics (DFMD) approach to model the binding of barstar to barnase to demonstrate that first-principles methods are also capable of modeling the binding. Essential component of DFMD approach is enhancing the role of long-range electrostatic interactions to provide guiding force of the monomers toward their correct binding orientation and position. Thus, it is demonstrated that the DFMD can successfully dock barstar to barnase even if the initial positions and orientations of both are completely different from the correct ones. Thus, the electrostatics provides orientational guidance along with pulling force to deliver the ligand in close proximity to the receptor.","PeriodicalId":49976,"journal":{"name":"Journal of Theoretical & Computational Chemistry","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/s0219633620500169","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical & Computational Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219633620500169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2

Abstract

Receptor–ligand interactions are involved in various biological processes, therefore understanding the binding mechanism and ability to predict the binding mode are essential for many biological investigations. While many computational methods exist to predict the 3D structure of the corresponding complex provided the knowledge of the monomers, here we use the newly developed DelPhiForce steered Molecular Dynamics (DFMD) approach to model the binding of barstar to barnase to demonstrate that first-principles methods are also capable of modeling the binding. Essential component of DFMD approach is enhancing the role of long-range electrostatic interactions to provide guiding force of the monomers toward their correct binding orientation and position. Thus, it is demonstrated that the DFMD can successfully dock barstar to barnase even if the initial positions and orientations of both are completely different from the correct ones. Thus, the electrostatics provides orientational guidance along with pulling force to deliver the ligand in close proximity to the receptor.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
barnase-barstar与DelPhiForce的Ab-initio结合引导分子动力学(DFMD)方法
受体-配体相互作用涉及多种生物过程,因此了解结合机制和预测结合模式的能力对于许多生物学研究至关重要。虽然存在许多计算方法来预测相应复合物的三维结构,提供单体的知识,但在这里,我们使用新开发的DelPhiForce引导分子动力学(DFMD)方法来模拟barstar与barnase的结合,以证明第一性原理方法也能够模拟这种结合。DFMD方法的重要组成部分是增强远程静电相互作用的作用,为单体的正确结合方向和位置提供引导力。因此,证明了DFMD可以成功对接barstar和barnase,即使两者的初始位置和方向完全不同。因此,静电提供了方向引导以及拉力,将配体运送到靠近受体的地方。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
审稿时长
3 months
期刊介绍: The Journal of Theoretical and Computational Chemistry (JTCC) is an international interdisciplinary journal aimed at providing comprehensive coverage on the latest developments and applications of research in the ever-expanding field of theoretical and computational chemistry. JTCC publishes regular articles and reviews on new methodology, software, web server and database developments. The applications of existing theoretical and computational methods which produce significant new insights into important problems are also welcomed. Papers reporting joint computational and experimental investigations are encouraged. The journal will not consider manuscripts reporting straightforward calculations of the properties of molecules with existing software packages without addressing a significant scientific problem. Areas covered by the journal include molecular dynamics, computer-aided molecular design, modeling effects of mutation on stability and dynamics of macromolecules, quantum mechanics, statistical mechanics and other related topics.
期刊最新文献
A TD-DFT Study for the Excited State Calculations of Microhydration of N-Acetyl-Phenylalaninylamide (NAPA) Design of New Thiadiazole Derivatives with Improved Antidiabetic Activity Designing Artemisinins with Antimalarial Potential, Combining Molecular Electrostatic Potential, Ligand-Heme Interaction and Multivariate Models In Silico Docking of Rhodanine Derivatives and 3D-QSAR Study to Identify Potent Prostate Cancer Inhibitors Mechanism of Degradation of Rice Starch Amylopectin by Oryzenin Using ONIOM Quantum Calculations [DFT/B3LYP/6-31+G(D, P): AM1]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1