The Influence of Ammonium Nitrate/Urea Ratio on the Reaction Process and Structure of Formed Alumina–Mullite Composite

IF 0.5 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY International Journal of Self-Propagating High-Temperature Synthesis Pub Date : 2022-09-15 DOI:10.3103/S1061386222030037
E. Feizabadi, A. Meysami, M. Hajisafari
{"title":"The Influence of Ammonium Nitrate/Urea Ratio on the Reaction Process and Structure of Formed Alumina–Mullite Composite","authors":"E. Feizabadi,&nbsp;A. Meysami,&nbsp;M. Hajisafari","doi":"10.3103/S1061386222030037","DOIUrl":null,"url":null,"abstract":"<p>In this study, the initial materials including aluminum nitrate nonahydrate and silicon powder were used to produce alumina–mullite composite through solution combustion synthesis (SCS). This paper aimed to investigate the influence of ammonium nitrate added as co-fuel to urea on the formation of alumina–mullite. For this purpose, ammonium nitrate/urea ratios of 0, 0.2, 0.4 and 0.5 were used for SCS. It was revealed through thermo-chemical calculations that increasing this ratio enhances the adiabatic temperature of combustion and facilitates the formation of crystalline mullite that is confirmed by structural analysis. XRD patterns showed that with increasing ammonium nitrate/urea ratio, the mullite peaks are intensified, and its trend is into the crystalline structure. Hence the mullite volume fraction increased from 4.12 to 30.52%. SEM studies showed that this ratio decreases a mean particles size from 264 to 133 nm.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"31 3","pages":"121 - 130"},"PeriodicalIF":0.5000,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Self-Propagating High-Temperature Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1061386222030037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

In this study, the initial materials including aluminum nitrate nonahydrate and silicon powder were used to produce alumina–mullite composite through solution combustion synthesis (SCS). This paper aimed to investigate the influence of ammonium nitrate added as co-fuel to urea on the formation of alumina–mullite. For this purpose, ammonium nitrate/urea ratios of 0, 0.2, 0.4 and 0.5 were used for SCS. It was revealed through thermo-chemical calculations that increasing this ratio enhances the adiabatic temperature of combustion and facilitates the formation of crystalline mullite that is confirmed by structural analysis. XRD patterns showed that with increasing ammonium nitrate/urea ratio, the mullite peaks are intensified, and its trend is into the crystalline structure. Hence the mullite volume fraction increased from 4.12 to 30.52%. SEM studies showed that this ratio decreases a mean particles size from 264 to 133 nm.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
硝酸铵/尿素配比对氧化铝-莫来石复合材料反应过程及结构的影响
本研究以非水合硝酸铝和硅粉为原料,通过溶液燃烧合成(SCS)制备了铝莫来石复合材料。本文旨在研究硝酸铵作为共燃料加入尿素中对铝莫来石形成的影响。为此,硝酸铵/尿素比例分别为0、0.2、0.4和0.5。热化学计算表明,增大这一比值可以提高燃烧的绝热温度,有利于莫来石结晶的形成,这一点也得到了结构分析的证实。XRD谱图表明,随着硝酸铵/尿素比的增大,莫来石峰增强,并有向结晶结构转变的趋势。莫来石体积分数由4.12%提高到30.52%。扫描电镜研究表明,这一比例减少了平均粒径从264到133纳米。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.00
自引率
33.30%
发文量
27
期刊介绍: International Journal of Self-Propagating High-Temperature Synthesis  is an international journal covering a wide range of topics concerned with self-propagating high-temperature synthesis (SHS), the process for the production of advanced materials based on solid-state combustion utilizing internally generated chemical energy. Subjects range from the fundamentals of SHS processes, chemistry and technology of SHS products and advanced materials to problems concerned with related fields, such as the kinetics and thermodynamics of high-temperature chemical reactions, combustion theory, macroscopic kinetics of nonisothermic processes, etc. The journal is intended to provide a wide-ranging exchange of research results and a better understanding of developmental and innovative trends in SHS science and applications.
期刊最新文献
Spatial Gasless Combustion Modes in a Sample with Discrete Structure Finger Formation during Combustion of Granular Mixture Zr + 0.5C in Inert Gas Flow Exploring the Influence of Zinc Doping on Nano Ferrites: A Review of Structural, Dielectric, and Magnetic Studies Self-Propagating High-Temperature Synthesis of MgAlON Using Mg Powder Multifunctional Catalysts Based on High-Entropy Transition Metal Alloys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1