Mohan Agrawal, Jai Bhan Verma, G. Joshi, S. Chandel, Ved Prakash, R. K. Mishra
{"title":"Numerical investigation of flow control in low-pressure turbine cascade using Gurney Flaps","authors":"Mohan Agrawal, Jai Bhan Verma, G. Joshi, S. Chandel, Ved Prakash, R. K. Mishra","doi":"10.1515/tjeng-2022-0045","DOIUrl":null,"url":null,"abstract":"Abstract This paper reports the numerical investigations to analyze the effect of the application of Gurney Flaps on various configurations in a Low-Pressure Turbine (LPT) cascade in mitigating the laminar flow separation during low Reynolds number operations. T106 LPT blade of chord 60 mm has been selected for the present study. Gurney Flaps of flat type and quarter round type of a particular height of the chord length are selected. Flaps are provided near the blades’ trailing edges for numerical analysis. The numerical computations are performed using STARCCM+ software, and the K-ω SST turbulence Model is used for turbulence closure. The studies are performed at various Reynolds numbers ranging from 37,500 to 138,750 to understand the application of various configurations of Gurney Flap vis a vis turbine blade without Gurney Flap. Performance parameters such as lift coefficient, drag coefficient, aerodynamic efficiency, and static pressure distributions over the blade surface are used to analyse the alterations in the performance of aerodynamic characteristics of the LPT Blade. All the Gurney Flap configurations improved the overall blade aerodynamics. Among these configurations, the flat Gurney Flap configuration is found to be superior as it improves the aerodynamic efficiency of the blade.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Turbo & Jet-Engines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/tjeng-2022-0045","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract This paper reports the numerical investigations to analyze the effect of the application of Gurney Flaps on various configurations in a Low-Pressure Turbine (LPT) cascade in mitigating the laminar flow separation during low Reynolds number operations. T106 LPT blade of chord 60 mm has been selected for the present study. Gurney Flaps of flat type and quarter round type of a particular height of the chord length are selected. Flaps are provided near the blades’ trailing edges for numerical analysis. The numerical computations are performed using STARCCM+ software, and the K-ω SST turbulence Model is used for turbulence closure. The studies are performed at various Reynolds numbers ranging from 37,500 to 138,750 to understand the application of various configurations of Gurney Flap vis a vis turbine blade without Gurney Flap. Performance parameters such as lift coefficient, drag coefficient, aerodynamic efficiency, and static pressure distributions over the blade surface are used to analyse the alterations in the performance of aerodynamic characteristics of the LPT Blade. All the Gurney Flap configurations improved the overall blade aerodynamics. Among these configurations, the flat Gurney Flap configuration is found to be superior as it improves the aerodynamic efficiency of the blade.
期刊介绍:
The Main aim and scope of this Journal is to help improve each separate components R&D and superimpose separated results to get integrated systems by striving to reach the overall advanced design and benefits by integrating: (a) Physics, Aero, and Stealth Thermodynamics in simulations by flying unmanned or manned prototypes supported by integrated Computer Simulations based on: (b) Component R&D of: (i) Turbo and Jet-Engines, (ii) Airframe, (iii) Helmet-Aiming-Systems and Ammunition based on: (c) Anticipated New Programs Missions based on (d) IMPROVED RELIABILITY, DURABILITY, ECONOMICS, TACTICS, STRATEGIES and EDUCATION in both the civil and military domains of Turbo and Jet Engines.
The International Journal of Turbo & Jet Engines is devoted to cutting edge research in theory and design of propagation of jet aircraft. It serves as an international publication organ for new ideas, insights and results from industry and academic research on thermodynamics, combustion, behavior of related materials at high temperatures, turbine and engine design, thrust vectoring and flight control as well as energy and environmental issues.