Qianzhi Zhang , Jinyue Yan , H. Oliver Gao , Fengqi You
{"title":"A Systematic Review on power systems planning and operations management with grid integration of transportation electrification at scale","authors":"Qianzhi Zhang , Jinyue Yan , H. Oliver Gao , Fengqi You","doi":"10.1016/j.adapen.2023.100147","DOIUrl":null,"url":null,"abstract":"<div><p>Transportation electrification plays a crucial role in mitigating greenhouse gas (GHG) emissions and enabling the decarbonization of power systems. However, current research on electric vehicles (EVs) only provides a fragmented examination of their impact on power system planning and operation, lacking a comprehensive overview across both transmission and distribution levels. This limits the effectiveness and efficiency of power system solutions for greater EV adoption. Conducting a systematic review of the effects of EVs on power transmission and distribution systems (e.g., grid integration, planning, operation, etc.), this paper aims to bridge the fragmented literature on the topic together by focusing on the interplay between transportation electrification and power systems. The study sheds light on the interplay between transportation electrification and power systems, delving into the importance of classifying EVs and charging infrastructure based on powertrain design, duty cycle, and typical features, as well as methods of capturing charging patterns and determining spatial-temporal charging profiles. Furthermore, we provide an in-depth discussion on the benefits of smart charging and the provision of grid-to-vehicle (G2V) and vehicle-to-grid (V2G) services for maintaining power system reliability. With the holistic systems approach, this paper can identify the main objectives and potential barriers of power transmission and distribution systems in accommodating transportation electrification at scale. Concurrently, it paves the way for a comprehensive understanding of technological innovation, transportation-power system decarbonization, policy pathways, environmental advantages, scenario designs, and avenues for future research.</p></div>","PeriodicalId":34615,"journal":{"name":"Advances in Applied Energy","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666792423000264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 5
Abstract
Transportation electrification plays a crucial role in mitigating greenhouse gas (GHG) emissions and enabling the decarbonization of power systems. However, current research on electric vehicles (EVs) only provides a fragmented examination of their impact on power system planning and operation, lacking a comprehensive overview across both transmission and distribution levels. This limits the effectiveness and efficiency of power system solutions for greater EV adoption. Conducting a systematic review of the effects of EVs on power transmission and distribution systems (e.g., grid integration, planning, operation, etc.), this paper aims to bridge the fragmented literature on the topic together by focusing on the interplay between transportation electrification and power systems. The study sheds light on the interplay between transportation electrification and power systems, delving into the importance of classifying EVs and charging infrastructure based on powertrain design, duty cycle, and typical features, as well as methods of capturing charging patterns and determining spatial-temporal charging profiles. Furthermore, we provide an in-depth discussion on the benefits of smart charging and the provision of grid-to-vehicle (G2V) and vehicle-to-grid (V2G) services for maintaining power system reliability. With the holistic systems approach, this paper can identify the main objectives and potential barriers of power transmission and distribution systems in accommodating transportation electrification at scale. Concurrently, it paves the way for a comprehensive understanding of technological innovation, transportation-power system decarbonization, policy pathways, environmental advantages, scenario designs, and avenues for future research.