Investigations on the thermal conditions during laser beam welding of high-strength steel 100Cr6

IF 3.9 Q2 ENGINEERING, INDUSTRIAL Advances in Industrial and Manufacturing Engineering Pub Date : 2023-05-01 DOI:10.1016/j.aime.2023.100118
Eric Wasilewski, Nikolay Doynov, Ralf Ossenbrink, Vesselin Michailov
{"title":"Investigations on the thermal conditions during laser beam welding of high-strength steel 100Cr6","authors":"Eric Wasilewski,&nbsp;Nikolay Doynov,&nbsp;Ralf Ossenbrink,&nbsp;Vesselin Michailov","doi":"10.1016/j.aime.2023.100118","DOIUrl":null,"url":null,"abstract":"<div><p>This study examines the thermal conditions during laser beam welding of 100Cr6 high-strength steel using a TruDisk5000 disc laser with a continuous adjustable power range of 100–5000 W. Two parameter sets, characterized by laser power and welding speeds, were analyzed by thermal-metallurgical FE simulations to determine their impact on the thermal conditions during welding. The results show a significant shift in heat coupling, with conduction transitioning to deep penetration welding. As a result of the high welding speeds and reduced energy input, extremely high heating rates up to 2∙10<sup>4</sup> K s<sup>−1</sup> (set A) respectively 4∙10<sup>5</sup> K s<sup>−1</sup> (set B) occur. Both welds thus concern a range of temperature state values for which conventional Time-Temperature-Austenitization (TTA) diagrams are currently not defined, requiring calibration of the material models through general assumptions. Also, the change in energy input and welding speed causes significantly steep temperature gradients with a slope of approximately 5∙10<sup>3</sup> K mm<sup>−1</sup> and strong drops in the temperature rates, particularly in the heat affected zone. The temperature cycles also show very different cooling rates for the respective parameter sets, although in both cases they are well below a cooling time t<sub>8/5</sub> of 1 s, so that the phase transformation always leads to the formation of martensite. Since the investigated parameters are known to cause a loss of technological strength and conditionally result in cold cracks, these results will be used for further detailed experimental and numerical investigation of microstructure, hydrogen distribution, and stress-strain development at different restraint conditions.</p></div>","PeriodicalId":34573,"journal":{"name":"Advances in Industrial and Manufacturing Engineering","volume":"6 ","pages":"Article 100118"},"PeriodicalIF":3.9000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Industrial and Manufacturing Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666912923000077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study examines the thermal conditions during laser beam welding of 100Cr6 high-strength steel using a TruDisk5000 disc laser with a continuous adjustable power range of 100–5000 W. Two parameter sets, characterized by laser power and welding speeds, were analyzed by thermal-metallurgical FE simulations to determine their impact on the thermal conditions during welding. The results show a significant shift in heat coupling, with conduction transitioning to deep penetration welding. As a result of the high welding speeds and reduced energy input, extremely high heating rates up to 2∙104 K s−1 (set A) respectively 4∙105 K s−1 (set B) occur. Both welds thus concern a range of temperature state values for which conventional Time-Temperature-Austenitization (TTA) diagrams are currently not defined, requiring calibration of the material models through general assumptions. Also, the change in energy input and welding speed causes significantly steep temperature gradients with a slope of approximately 5∙103 K mm−1 and strong drops in the temperature rates, particularly in the heat affected zone. The temperature cycles also show very different cooling rates for the respective parameter sets, although in both cases they are well below a cooling time t8/5 of 1 s, so that the phase transformation always leads to the formation of martensite. Since the investigated parameters are known to cause a loss of technological strength and conditionally result in cold cracks, these results will be used for further detailed experimental and numerical investigation of microstructure, hydrogen distribution, and stress-strain development at different restraint conditions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
100Cr6高强度钢激光焊接热条件的研究
本研究使用功率范围为100 - 5000w的连续可调TruDisk5000圆盘激光器,研究了100Cr6高强度钢的激光束焊接过程中的热条件。通过热冶金有限元模拟,分析了激光功率和焊接速度两组参数对焊接过程热条件的影响。结果表明,热耦合发生了明显的转变,由传导过渡到深熔接。由于焊接速度快,能量输入少,加热速率极高,分别达到2∙104 K s−1 (a组)和4∙105 K s−1 (B组)。因此,这两个焊接都涉及到一系列温度状态值,而传统的时间-温度-奥氏体化(TTA)图目前还没有定义,需要通过一般假设来校准材料模型。此外,能量输入和焊接速度的变化导致温度梯度急剧下降,斜率约为5∙103 K mm−1,温度速率急剧下降,特别是在热影响区。在不同的参数下,温度循环也显示出不同的冷却速率,尽管在这两种情况下,它们都远低于冷却时间8/5 (1 s),因此相变总是导致马氏体的形成。由于已知所研究的参数会导致技术强度损失并有条件地导致冷裂纹,因此这些结果将用于进一步详细的微观结构、氢分布和不同约束条件下应力-应变发展的实验和数值研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Industrial and Manufacturing Engineering
Advances in Industrial and Manufacturing Engineering Engineering-Engineering (miscellaneous)
CiteScore
6.60
自引率
0.00%
发文量
31
审稿时长
18 days
期刊最新文献
Experimental investigation on micro-EDM hybrid drilling process Impact of graphene nanoparticles on DLP-printed parts' mechanical behavior Erratum to “Influence of changing loading directions on damage in sheet metal forming” [Adv. Ind. Manuf. Eng. 8 (2024) 100139] Modeling of equivalent strain in 2D cross-sections of open die forged components using neural networks Influence on micro-geometry and surface characteristics of laser powder bed fusion built 17-4 PH miniature spur gears in laser shock peening
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1