Valley-Spin Hall Effect-Based Nonvolatile Memory With Exchange-Coupling-Enabled Electrical Isolation of Read and Write Paths

IF 2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Journal on Exploratory Solid-State Computational Devices and Circuits Pub Date : 2022-11-29 DOI:10.1109/JXCDC.2022.3224832
Karam Cho;Sumeet Kumar Gupta
{"title":"Valley-Spin Hall Effect-Based Nonvolatile Memory With Exchange-Coupling-Enabled Electrical Isolation of Read and Write Paths","authors":"Karam Cho;Sumeet Kumar Gupta","doi":"10.1109/JXCDC.2022.3224832","DOIUrl":null,"url":null,"abstract":"Valley-spin hall (VSH) effect in monolayer WSe2 has been shown to exhibit highly beneficial features for nonvolatile memory (NVM) design. Key advantages of VSH-based magnetic random access memory (VSH-MRAM) over spin orbit torque (SOT)-MRAM include access transistor-less compact bit-cell and low-power switching of perpendicular magnetic anisotropy (PMA) magnets. Nevertheless, large device resistance in the read path (\n<inline-formula> <tex-math>$R_{S}$ </tex-math></inline-formula>\n) due to low mobility of WSe2 and Schottky contacts deteriorates sense margin (SM), offsetting the benefits of VSH-MRAM. To address this limitation, we propose another flavor of VSH-MRAM that (while inheriting most of the benefits of VSH-MRAM) achieves lower \n<inline-formula> <tex-math>$R_{S}$ </tex-math></inline-formula>\n in the read path by electrically isolating the read and write terminals. This is enabled by coupling VSH with electrically isolated but magnetically coupled PMA magnets via interlayer exchange coupling. Designing the proposed devices using object-oriented micromagnetic framework (OOMMF) simulation, we ensure the robustness of the exchange-coupled PMA system under process variations. To maintain a compact memory footprint, we share the read access transistor across multiple bit-cells. Compared with the existing VSH-MRAMs, our design achieves 39%–42% and 36%–46% reduction in read time and energy, respectively, along with \n<inline-formula> <tex-math>$1.1\\times - 1.3\\times $ </tex-math></inline-formula>\n larger SM at a comparable area. This comes at the cost of \n<inline-formula> <tex-math>$1.7\\times $ </tex-math></inline-formula>\n and \n<inline-formula> <tex-math>$2.0\\times $ </tex-math></inline-formula>\n increase in write time and energy, respectively. Thus, the proposed design is suitable for applications in which reads are more dominant than writes.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":"8 2","pages":"157-165"},"PeriodicalIF":2.0000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/6570653/9998452/09966380.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9966380/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Valley-spin hall (VSH) effect in monolayer WSe2 has been shown to exhibit highly beneficial features for nonvolatile memory (NVM) design. Key advantages of VSH-based magnetic random access memory (VSH-MRAM) over spin orbit torque (SOT)-MRAM include access transistor-less compact bit-cell and low-power switching of perpendicular magnetic anisotropy (PMA) magnets. Nevertheless, large device resistance in the read path ( $R_{S}$ ) due to low mobility of WSe2 and Schottky contacts deteriorates sense margin (SM), offsetting the benefits of VSH-MRAM. To address this limitation, we propose another flavor of VSH-MRAM that (while inheriting most of the benefits of VSH-MRAM) achieves lower $R_{S}$ in the read path by electrically isolating the read and write terminals. This is enabled by coupling VSH with electrically isolated but magnetically coupled PMA magnets via interlayer exchange coupling. Designing the proposed devices using object-oriented micromagnetic framework (OOMMF) simulation, we ensure the robustness of the exchange-coupled PMA system under process variations. To maintain a compact memory footprint, we share the read access transistor across multiple bit-cells. Compared with the existing VSH-MRAMs, our design achieves 39%–42% and 36%–46% reduction in read time and energy, respectively, along with $1.1\times - 1.3\times $ larger SM at a comparable area. This comes at the cost of $1.7\times $ and $2.0\times $ increase in write time and energy, respectively. Thus, the proposed design is suitable for applications in which reads are more dominant than writes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于谷自旋霍尔效应的具有交换耦合的非易失性存储器实现读写路径的电隔离
单层WSe2中的谷自旋厅(VSH)效应在非易失性存储器(NVM)设计中表现出非常有益的特性。基于vsh的磁随机存取存储器(VSH-MRAM)相对于基于自旋轨道扭矩(SOT)的磁随机存取存储器(VSH-MRAM)的主要优点包括无接入晶体管的紧凑位单元和垂直磁各向异性(PMA)磁体的低功耗开关。然而,由于WSe2和Schottky触点的低迁移率,读取路径($R_{S}$)中的大器件电阻会恶化感知余量(SM),抵消了VSH-MRAM的好处。为了解决这一限制,我们提出了另一种风格的VSH-MRAM(在继承VSH-MRAM的大部分优点的同时),通过电隔离读写终端,在读路径中实现更低的R_{S}$。这是通过层间交换耦合将VSH与电隔离但磁耦合的PMA磁体耦合实现的。采用面向对象的微磁框架(OOMMF)仿真设计所提出的器件,保证了交换耦合PMA系统在工艺变化下的鲁棒性。为了保持紧凑的内存占用,我们跨多个位单元共享读访问晶体管。与现有的vsh - mram相比,我们的设计分别减少了39%-42%和36%-46%的读取时间和能量,同时在相同面积下的SM增大了1.1倍- 1.3倍。这样做的代价是写入时间和精力分别增加1.7倍和2.0倍。因此,所建议的设计适用于读比写更重要的应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.00
自引率
4.20%
发文量
11
审稿时长
13 weeks
期刊最新文献
2024 Index IEEE Journal on Exploratory Solid-State Computational Devices and Circuits Vol. 10 Front Cover Table of Contents INFORMATION FOR AUTHORS IEEE Journal on Exploratory Solid-State Computational Devices and Circuits publication information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1