Deep learning-based option pricing for Barndorff–Nielsen and Shephard model

IF 0.6 Q4 BUSINESS, FINANCE International Journal of Financial Engineering Pub Date : 2023-07-26 DOI:10.1142/s2424786323500159
Takuji Arai
{"title":"Deep learning-based option pricing for Barndorff–Nielsen and Shephard model","authors":"Takuji Arai","doi":"10.1142/s2424786323500159","DOIUrl":null,"url":null,"abstract":"This paper aims to develop a deep learning-based numerical method for option prices for the Barndorff–Nielsen and Shephard model, a representative jump-type stochastic volatility model. Using that option prices for the Barndorff–Nielsen and Shephard model satisfy a partial-integro differential equation, we will develop an effective numerical calculation method even in settings where conventional numerical methods are unavailable. In addition, we will implement some numerical experiments.","PeriodicalId":54088,"journal":{"name":"International Journal of Financial Engineering","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Financial Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2424786323500159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 2

Abstract

This paper aims to develop a deep learning-based numerical method for option prices for the Barndorff–Nielsen and Shephard model, a representative jump-type stochastic volatility model. Using that option prices for the Barndorff–Nielsen and Shephard model satisfy a partial-integro differential equation, we will develop an effective numerical calculation method even in settings where conventional numerical methods are unavailable. In addition, we will implement some numerical experiments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Barndorff–Nielsen和Shephard模型的基于深度学习的期权定价
本文旨在为具有代表性的跳跃型随机波动率模型Barndorff–Nielsen和Shephard模型开发一种基于深度学习的期权价格数值方法。使用Barndorff–Nielsen和Shephard模型的期权价格满足偏积分微分方程,我们将开发一种有效的数值计算方法,即使在传统数值方法不可用的情况下也是如此。此外,我们还将进行一些数值实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
31
期刊最新文献
Optimal investment–consumption–insurance strategy with inflation risk and stochastic income in an Itô–Lévy setting Asymmetric link between energy market and crypto market The binomial option pricing model: The trouble with dividends Stochastic method of dynamic hedging applied to the high liquid asset markets Consumer preferences on quality of supermarket services in organized retailing: Structural equation modeling approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1