Effect of Growing Conditions and Post Treatments on Calcium Phosphate Films Obtained by Electrode Position

Q4 Materials Science Journal of Surface Science and Technology Pub Date : 2019-06-25 DOI:10.18311/JSST/2019/21052
F. N. Jiménez-García, L. R. Giraldo-Torres, B. Segura-Giraldo, A. Giraldo-Betancur, J. Muñoz-Saldaña
{"title":"Effect of Growing Conditions and Post Treatments on Calcium Phosphate Films Obtained by Electrode Position","authors":"F. N. Jiménez-García, L. R. Giraldo-Torres, B. Segura-Giraldo, A. Giraldo-Betancur, J. Muñoz-Saldaña","doi":"10.18311/JSST/2019/21052","DOIUrl":null,"url":null,"abstract":"The effect of growing conditions and post treatments in electrodeposited calcium phosphate films on 316 L stainless steel is presented. The concentration and pH of electrolyte solution and the potential values for the electrodeposition process were determined based on a study of cyclic voltammetry curves. The electrolyte concentration was fixed at 0.025 M ((NH4) H2PO4) and 0.042 M (Ca(NO3)2.4H2O), choosing a pH = 5 as the better condition for the films deposition. In addition, the electrolyte temperature was varied between room temperature and 60°C to determine the influence of this parameter on the deposited films. Films were characterized using Fourier Transform Infrared Spectroscopy, X-ray diffraction and Scanning electron microscopy equipped with energy dispersive spectroscopy. The as deposited films at -1.2 V and -1.7 V exhibit the dicalcium phosphate dihydrate phase (Brushite) while thermal post treatment favor the formation of octacalcium phosphate in amorphous phase, and basic treatment tend to produce the Hydroxyapatite phase. The suggested mechanism for the HAp phase formation, after the basic treatment, consists in providing the necessary OH- groups to complete the synthesis process.","PeriodicalId":17031,"journal":{"name":"Journal of Surface Science and Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Surface Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18311/JSST/2019/21052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 2

Abstract

The effect of growing conditions and post treatments in electrodeposited calcium phosphate films on 316 L stainless steel is presented. The concentration and pH of electrolyte solution and the potential values for the electrodeposition process were determined based on a study of cyclic voltammetry curves. The electrolyte concentration was fixed at 0.025 M ((NH4) H2PO4) and 0.042 M (Ca(NO3)2.4H2O), choosing a pH = 5 as the better condition for the films deposition. In addition, the electrolyte temperature was varied between room temperature and 60°C to determine the influence of this parameter on the deposited films. Films were characterized using Fourier Transform Infrared Spectroscopy, X-ray diffraction and Scanning electron microscopy equipped with energy dispersive spectroscopy. The as deposited films at -1.2 V and -1.7 V exhibit the dicalcium phosphate dihydrate phase (Brushite) while thermal post treatment favor the formation of octacalcium phosphate in amorphous phase, and basic treatment tend to produce the Hydroxyapatite phase. The suggested mechanism for the HAp phase formation, after the basic treatment, consists in providing the necessary OH- groups to complete the synthesis process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生长条件和后处理对电极位置制备磷酸钙膜的影响
介绍了生长条件和后处理对316L不锈钢电沉积磷酸钙膜的影响。基于循环伏安曲线的研究,确定了电解质溶液的浓度、pH值以及电沉积过程的电势值。电解质浓度固定在0.025M((NH4)H2PO4)和0.042M(Ca(NO3)2.4H2O),选择pH=5作为薄膜沉积的较好条件。此外,电解质温度在室温和60°C之间变化,以确定该参数对沉积膜的影响。利用傅立叶变换红外光谱、X射线衍射和配备能量色散光谱的扫描电子显微镜对薄膜进行了表征。在-1.2V和-1.7V下沉积的薄膜呈现出磷酸二钙二水合物相(Brushite),而热后处理有利于形成无定形相的磷酸八钙,并且碱性处理倾向于产生羟基磷灰石相。所提出的HAp相形成的机制,在基础处理后,包括提供必要的OH-基团来完成合成过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍: The Indian Society for Surface Science and Technology is an organization for the cultivation, interaction and dissemination of knowledge in the field of surface science and technology. It also strives to promote Industry-Academia interaction
期刊最新文献
Revealing melt-vapor-powder interaction towards laser powder bed fusion process via DEM-CFD coupled model Progress and challenges in energy storage and utilization via ammonia Deposition of DLC film on the inner surface of N80 pipeline by hollow cathode PECVD Improving activity and barrier properties of epoxy modified polyurethane coating with in-situ polymerized polypyrrole functionalized graphene oxide Machined surface formation and integrity control technology of SiCp/Al composites: a review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1