Anggie Wahyu Saputra, A. Wibawa, U. Pujianto, Agung Bella Putra Utama, A. Nafalski
{"title":"LSTM-based Multivariate Time-Series Analysis: A Case of Journal Visitors Forecasting","authors":"Anggie Wahyu Saputra, A. Wibawa, U. Pujianto, Agung Bella Putra Utama, A. Nafalski","doi":"10.33096/ilkom.v14i1.1106.57-62","DOIUrl":null,"url":null,"abstract":"Forecasting is the process of predicting something in the future based on previous patterns. Forecasting will never be 100% accurate because the future has a problem of uncertainty. However, using the right method can make forecasting have a low error rate value to provide a good forecast for the future. This study aims to determine the effect of increasing the number of hidden layers and neurons on the performance of the long short-term memory (LSTM) forecasting method. LSTM performance measurement is done by root mean square error (RMSE) in various architectural scenarios. The LSTM algorithm is considered capable of handling long-term dependencies on its input and can predict data for a relatively long time. Based on research conducted from all models, the best results were obtained with an RMSE value of 0.699 obtained in model 1 with the number of hidden layers 2 and 64 neurons. Adding the number of hidden layers can significantly affect the RMSE results using neurons 16 and 32 in Model 1.","PeriodicalId":33690,"journal":{"name":"Ilkom Jurnal Ilmiah","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ilkom Jurnal Ilmiah","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33096/ilkom.v14i1.1106.57-62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Forecasting is the process of predicting something in the future based on previous patterns. Forecasting will never be 100% accurate because the future has a problem of uncertainty. However, using the right method can make forecasting have a low error rate value to provide a good forecast for the future. This study aims to determine the effect of increasing the number of hidden layers and neurons on the performance of the long short-term memory (LSTM) forecasting method. LSTM performance measurement is done by root mean square error (RMSE) in various architectural scenarios. The LSTM algorithm is considered capable of handling long-term dependencies on its input and can predict data for a relatively long time. Based on research conducted from all models, the best results were obtained with an RMSE value of 0.699 obtained in model 1 with the number of hidden layers 2 and 64 neurons. Adding the number of hidden layers can significantly affect the RMSE results using neurons 16 and 32 in Model 1.