{"title":"Strategies for compatibilization of polymer/waste tire rubber systems prepared via melt-blending","authors":"","doi":"10.1016/j.aiepr.2023.08.001","DOIUrl":null,"url":null,"abstract":"<div><p>Waste tires are a low-cost and high-calorific alternative fuel, therefore energy recovery is still very popular method of their utilization. On the other hand, waste tires are composed from high quality components and can be considered as valuable source of raw materials. Recent trends showed that further development of waste tire recycling technologies and waste tire rubber based materials are crucial to design the cradle-to-cradle loops for elastomer products. This approach fits to circular economy concept, however high content of waste tire rubber in various polymer blends or composites usually results in deterioration of their processing and/or the performance properties. Some of those technological issues can be resolved by choose suitable compatibilization method.</p><p>This work summarizes recent advances in the compatibilization strategies dedicated for polymer/waste tire rubber systems prepared via a simple melt-blending, including: i) optimization of processing conditions; ii) GTR particle size and oxidation; iii) devulcanization/reclaiming; iv) reactive blending and v) other methods. Furthermore, the limitations and challenges related to further development of thermoplastic composites and thermoplastic elastomers based on GTR are also highlighted.</p></div>","PeriodicalId":7186,"journal":{"name":"Advanced Industrial and Engineering Polymer Research","volume":"7 4","pages":"Pages 466-481"},"PeriodicalIF":9.9000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2542504823000519/pdfft?md5=5b7eae75285691b01b6d6a0116eeb272&pid=1-s2.0-S2542504823000519-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Industrial and Engineering Polymer Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542504823000519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Waste tires are a low-cost and high-calorific alternative fuel, therefore energy recovery is still very popular method of their utilization. On the other hand, waste tires are composed from high quality components and can be considered as valuable source of raw materials. Recent trends showed that further development of waste tire recycling technologies and waste tire rubber based materials are crucial to design the cradle-to-cradle loops for elastomer products. This approach fits to circular economy concept, however high content of waste tire rubber in various polymer blends or composites usually results in deterioration of their processing and/or the performance properties. Some of those technological issues can be resolved by choose suitable compatibilization method.
This work summarizes recent advances in the compatibilization strategies dedicated for polymer/waste tire rubber systems prepared via a simple melt-blending, including: i) optimization of processing conditions; ii) GTR particle size and oxidation; iii) devulcanization/reclaiming; iv) reactive blending and v) other methods. Furthermore, the limitations and challenges related to further development of thermoplastic composites and thermoplastic elastomers based on GTR are also highlighted.